
Unfolding based Minimal Test Suites for
Testing Multithreaded Programs

Hernán Ponce-de-León, Olli Saarikivi, Kari Kähkönen and Keijo Heljanko
Helsinki Institute for Information Technology HIIT and

Department of Computer Science, Aalto University
Helsinki, Finland

Email: {Hernan.PoncedeLeon, Olli.Saarikivi, Kari.Kahkonen, Keijo.Heljanko}@aalto.fi

Javier Esparza
Fakultät für informatik, Technische Universität München, Germany

Email: esparza@in.tum.de

Abstract—This paper focuses on the problem of computing the
minimal test suite for a terminating multithreaded program that
covers all its executable statements. We have in previous work
shown how to use unfoldings to capture the true concurrency
semantics of multithreaded programs and to generate test cases
for it. In this paper we rely on this earlier work and show
how the unfolding can be used to generate the minimal test
suite that covers all the executable statements of the program.
The problem of generating such a minimal test suite is shown
to be NP-complete in the size of the unfolding, and as a side
result, covering executable transitions of any terminating safe
Petri net is also NP-complete in the size of its unfolding. We
propose SMT-encodings to these problems and give initial results
on applying this encoding to compute the minimal test suite for
several benchmarks.

I. INTRODUCTION

Testing1 multithreaded programs is a very challenging prob-
lem since the number of possible combinations of concrete
input values and interleavings of threads is typically so large
that exhaustively testing all of them is not practical. In this
paper we build on our earlier work on testing terminating
multithreaded programs using net unfoldings [1], [2] which
allows us to generate small test suites that are often even
smaller than those generated by other partial order reduction
methods for testing. The approach contains dynamic symbolic
execution [3], [4] techniques for symbolic handling of data
values, which allows many concrete input values to be covered
with a single test case. Thus we have techniques to both
minimize the number of interleavings with unfoldings and
the number of concrete input values with dynamic symbolic
testing techniques. One of the side results of our testing
approach is the unfolding of the terminating multi-threaded
program in a symbolic form, which can be exploited for further
test suite optimization tasks, as shown below.

Sometimes the test suites our earlier approach has generated
can be too large. We might be in a testing setup where
initializing the test environment can be very expensive, for

1We use the term testing, but verification has also been used in the literature.

example the system might need an expensive manual initial-
ization procedure between test cases. In such cases it is natural
to ask whether we could optimize the test suite by generating
a minimal test suite that still covers the same events of the un-
folding. Another relevant question is whether we can generate
a minimal test suite that still covers all executable statements
of the program, which might be significantly smaller, but still
sufficient for many testing purposes.

A. Related Work

One popular approach to systematically test single threaded
programs is dynamic symbolic execution [3], [4] that allows
all execution paths of a program to be covered without
explicitly testing all input combinations. This testing approach
can also be extended to multithreaded programs by using a
runtime scheduler that controls the execution of threads [5];
the runtime scheduler can be forced to execute the execution
steps of threads in an specific order.

If one intends to find errors such as assertion violations, it
is not necessary to explore every possible interleaving because
some of the operation of the programs are independent and the
final state after executing them is the same regardless of the
order in which the operations are executed. Execution paths
can therefore been partitioned into equivalence classes called
Mazurkiewicz traces [6]. Partial order reduction is one of the
techniques that exploit independence between operations by
reducing the number of explored interleavings, but still analyz-
ing at least one representative for each equivalence class [7].
Recently, an improvement to this method have been pro-
posed to explore exactly one execution for each Mazurkiewicz
trace [8]. When using unfoldings, each Mazurkiewicz trace is
represented by a maximal configuration and therefore the same
optimality can be obtained by exploring only one execution for
each maximal configuration.

Even using techniques such as dynamic symbolic execution
or partial order reduction to alleviate the space state explo-
sion problem, the number of execution paths typically grows
fast. In order to achieve scalability, an alternative approach

is to only cover local states of each thread instead of all
the Mazurkiewicz traces. This approach still allows assertion
violations to be detected. The testing algorithm presented
in [1] is based on Petri net unfoldings and dynamic symbolic
execution and explores all the reachable local states of threads.
This approach is extended to contextual nets in [2] allowing in
general a more succinct representation of the execution paths.

B. Contributions

Given an unfolding representation of the program under
test, we study the problem of finding minimal test suites
to cover every event in the unfolding. We show that this
problem is NP-complete and propose an SMT-encoding for it.
Additionally we explain how a similar encoding can be used
to cover all the statements of the program under test. We use
several benchmarks to compare the results obtained by these
encodings with the test suites generated by the algorithms
in [1] and [2]. As a side result, we show that the problem
of covering all the transitions in a safe and terminating Petri
net is also NP-hard in the size of its unfolding.

As a technical note, we have symbolic data in multithreaded
programs, which makes it very difficult to use cut-off events
in our unfoldings to handle programs with cyclic state space:
as each event corresponds to many concrete input values, the
reasoning about cut-offs will need reasoning about symbolic
data, which currently requires too much overhead. See [9] for
more discussion. We will discuss how adding cut-offs will
change the setup.

The rest of the article is structured as following: Section II
presents the assumptions on the kind of programs we consider,
the basic notions of dynamic symbolic execution, regular and
contextual nets and their corresponding unfoldings; Section III
explains how to model a given program with different kind of
nets and assumptions; Sections IV and V state respectively
the problems of covering all events of an unfolding and all
transitions of a Petri net and give solutions based on SMT-
encodings; we conclude in Section VI.

II. BACKGROUND

In this section we state our assumptions on the programs
under test and give a brief overview of the central concepts
needed to understand the rest of the paper.

A. The program under test

In order to simplify the presentation, we consider programs
with an acyclic state space (programs which terminate) where
the number of threads and shared variables is fixed and the
only nondeterminism is given by the concurrent access to
shared variables and by input data from the environment. We
also assume that the operations accessing shared memory are
sequentially consistent. The states of the program consist of
local states of the threads and the program’s shared state; those
states are modified by the execution of operations. Operations
are divided into invisible operations which only modify the
local state of a thread and visible operations which modify the
global state of the program and are the only operations that can

directly affect the execution in other threads. If-statements are
evaluated only on the values in the local state of the executing
thread and therefore cannot access shared variables directly.
Programs can be modified (e.g. by using temporary variables)
to satisfy these assumptions without changing the behavior of
the program. Visible operations include acquire and release of
a lock and reading from or writing to a shared variable. Read
operations access the value of a shared variable and assign it
to a variable in the local state of the thread performing the
operation. Write operations assign either a constant or a value
from a local variable to a shared variable. A test execution is a
sequence of program operations; a test is a set of input values
and a schedule.

B. Dynamic symbolic execution

Dynamic symbolic execution (DSE) or concolic testing [3],
[4] is a test generation approach which executes a program
both concretely and symbolically at the same time. The con-
crete execution corresponds to the execution of the actual pro-
gram under test and symbolic execution computes constraints
on values of the variables in the program by using symbolic
values that are expressed in terms of inputs to the program.
At each branch point in the program’s execution, the symbolic
constraints specify the input values that cause the program to
take a specific branch. As an example, executing a program
x = x+1; if(x > 0); generates constraints input1+1 > 0 and
input1+1 ≤ 0 at the if-statement assuming that the symbolic
value input1 is assigned initially to x. A path constraint is a
conjunction of the symbolic constraints corresponding to each
branch point in a given execution path. All input values that
satisfy a path constraint will explore the same execution path
and therefore is it not necessary to test them all. If a test
execution goes through multiple branch points that depend on
the input values, a path constraint can be constructed for each
of the branches that were left unexplored along the execution
path allowing to test other branches in another test execution.
These constraints are typically solved using SMT-solvers in
order to obtain concrete values for the input symbols. This
allows all the feasible execution paths through the program
under test to be explored systematically. In the modeling of our
program we consider the branching of the program dependent
on inputs from the environment.

C. Petri nets and their unfoldings

Our approach consists of modeling the observable behavior
of a multithreaded program during testing with different kinds
of net unfoldings. Different modelings of the program are
presented in the next section and in the following we describe
the basic concepts needed to understand them.

Regular nets. A net is a triple (P, T, F) where P and T
are disjoint sets of places and transitions and F ⊆ (P × T)∪
(T × P) is a flow relation. Places and transitions are called
nodes and elements of F arcs. The preset and postset of a
node x are respectively defined as •x = {y | (y, x) ∈ F}
and x• = {y | (x, y) ∈ F}. A marking of a net is a mapping

P → N. A Petri net is a tuple N = (P, T, F,M0) where M0 is
the initial marking of the net (P, T, F). Graphically markings
are represented by putting tokens on circles that represent the
places of a net. We restrict to the so-called safe nets where
each marking puts zero or one token at each place. A transition
t is enabled in any marking that puts tokens on all the places
in the preset of t. The causality relation < in a net is the
transitive closure of F while its reflexive and transitive closure
is denoted by ≤. A set of causes of a node x is defined as
bxc = {t ∈ T | t ≤ x}. Two nodes x and y are in conflict
(denoted by x#y) if there are transitions t1 6= t2 such that
•t1 ∩ •t2 6= ∅ and t1 ≤ x and t2 ≤ y.

In the same way a directed graph can be unrolled into a
tree that represents all paths through the graph, a Petri net can
be unrolled into an acyclic net called an occurrence net. An
occurrence net is an acyclic net (B,E,G) where B and E
are called conditions and events and G is the partially ordered
flow relation. The occurrence net also satisfies the following
conditions: (i) for every b ∈ B, |•b| ≤ 1; (ii) for every x ∈
B∪E the set bxc is finite; and (iii) no node is in conflict with
itself.

A branching process is a tuple (O, l) = (B,E,G, l) where
l : B ∪ E → P ∪ T is a labeling function such that: (i)
l(B) ∈ P and l(E) ∈ T ; (ii) for all e ∈ E, the restriction of
l to •e is a bijection between •e and •l(e); (iii) the restriction
of l to Min(O) is a bijection between Min(O) and M0,
where Min(O) denotes the set of minimal elements with
respect to the causal relation; and (iv) for all e, f ∈ E, if
•e = •f and l(e) = l(f) then e = f . The labeling l relates
each event and condition with its corresponding transition and
place in the (folded) net. The branching process represents
all the possible interleavings between transitions of the net.
Different branching processes can be obtained by stopping the
unrolling process at different depths. The maximal (possibly
infinite when the state space is acyclic) branching process is
called the unfolding of a Petri net. To simplify the discussion
in this paper, we use the term unfolding for all branching
processes and not just the maximal one.

Given an unfolding U = (B,E,G), any causally closed
and conflict-free set of events forms a configuration: C ⊆ E
is a configuration iff (i) e ∈ C ∧ e′ ≤ e ⇒ e′ ∈ C, and (ii)
e ∈ C ∧ e#e′ ⇒ e′ 6∈ C. Configurations of the unfolding
represent executions paths.

Example 1. Fig. 1 presents two unfoldings modeling the
behavior of a program with two threads reading a shared
variable x. The first unfolding keeps only one copy of the
variable (conditions labeled by x) while the second one
keeps local copies for each thread (conditions labeled by x1
and x2). Tokens represent permission to access the variable
or one of its local copies. The first unfolding only allows
serialized access to the shared variable while read operations
are considered independent in the second unfolding; this is
done by replicating the conditions representing the variable x
(for each variable there is one condition representing it for
each thread). Events r1 and r4 are causally related (r1 < r4)

Global variable: Thread 1: Thread 2:
int x=0; local b = x; local c = x;

r1b=0 r2 c=0

r3b=0 r4 c=0

thread1 thread2

x

x

x

(a)

r5b=0 r6 c=0

thread1 thread2

x1 x2

x1 x2

(b)

Fig. 1: An example program with its unfolding representation
with (a) serialized access to shared variables and (b) place
replication.

while events r1 and r2 are in conflict (r1#r2). Events r5
and r6 are neither causally related nor in conflict and are
called concurrent (r5 co r6). The configurations {r1, r4} and
{r2, r3} of the first unfolding show the two possible ways in
which the read operations can be sequentially executed in (a)
while the configuration {r5, r6} shows that the operations can
be done independently in (b).

Contextual nets. Even if unfoldings allow to represent the
possible interleavings between transitions of a Petri net in a
compact way, this representation can be done more succinctly
by extending regular nets with read arcs [10]. A contextual
net (c-net) is a tuple (P, T, F,C), where (P, T, F) is a regular
net and C ⊆ P × T is a context relation which elements are
called read arcs. The context of a transition t is defined as
t = {p | (p, t) ∈ C}. The causality relation < in a c-net is
the transitive closure of F ∪ {(t, t′) ∈ T × T | t• ∩ t′ 6= ∅}.
Two transitions t and t′ in a c-net are in asymmetric conflict,
denoted by t ↗ t′, iff (i) t < t′, or (ii) t ∩ •t′ 6= ∅, or (iii)
t 6= t′∧•t∩•t′ 6= ∅. The asymmetric conflict t↗ t′ represents
the fact that in any execution where both t and t′ happen, t
should precede t′.

As in the case of regular nets, c-nets can be unfolded into
an acyclic c-net describing all the possible paths from its
initial marking. A contextual occurrence net is an acyclic c-
net (B,E,G,C) such that: (i) for every condition b we have
|•b| ≤ 1, (ii) the causal relation is irreflexive and its reflexive
closure ≤ is a partial order such that bxc is finite for any node
x ∈ B ∪ E, and (iii) and ↗bec is acyclic for every e ∈ E.

The configurations of a contextual unfolding are formed
by causally-closed (considering both the flow relation and the
context) and ↗-cyclic-free set of events.

Example 2. Fig. 2 shows a program with three threads, two
of them reading a shared variable and a third one writing
it. The behavior of this program is represented by a regular
unfoldings in (a). The same program can be modeled by
the c-net in (b) using read arcs. In the unfolding (a) the
execution of a read operation is modeled by an event which
generates a new condition representing the variable. All these
conditions enable new write operations and four events (w1 -
w4) are added to the unfolding. In the case of c-nets, the
read operations can be modeled with read arcs and since
new variable conditions are not generated, only one event is
necessary to model the write operation.

Global variable:
int x;

Thread 1: Thread 2: Thread 3:
local b = x; x = 5 local c = x;

r1 r2 r3 r4 r5 r6w1 w2 w3 w4

thread1 thread2 thread3x1 x3x2

(a)

thread1 x thread2 thread3

r4b=5 r1b=0 wx=5 r2c=5 r3c=0

(b)

Fig. 2: Regular and contextual unfolding of a program.

III. MODELING MULTITHREADS PROGRAMS

It is possible to represent the execution paths of a program
with its computation tree where every interleaving is explicitly
represented. However, to exploit the independence between
some operations, net unfoldings can be used to obtain a
more succinct representation in many cases. This can be
done by representing shared variables, locks and local states
of threads with conditions and operations with events. Each

event represents the execution of the statements of a visible
operation and any subsequent invisible operations from the
same threads. Note how this definition groups the execution
of any invisible operations together with the previous visible
one, thus omitting the interleavings of invisible operations. As
typical with approaches that used DSE, we do not model the
local operations of threads unless their result depends on input
values.

We present three different ways to model a program: the
first approach (which we call naive) does not take into account
that concurrent reads to the same shared variable can be done
independently; the second approach uses a technique called
place replication to avoid unnecessary dependencies between
reads; the final approach uses contextual nets which may
reduce the size of the unfolding by introducing read arcs.

We assume that there is for each thread a set of conditions
for each program location (i.e. program counter values) the
thread can be in. We also assume that there is a set of
conditions for each lock in the program. The constructs of
Fig. 3 can be used to model a program by initially constructing
conditions for each thread, shared variable and lock that exists
in the initial part of the program. A marking containing these
conditions represents the initial state of the program. The
constructs (a),(b) and (c) represent symbolic branching of the
program depending on inputs and acquiring or releasing locks
for any of the three modeling approaches. Sections III-A and
III-B explain how reading from and writing to shared variables
can be modeled with different kind of nets and assumptions.

A. Modeling programs with regular unfoldings.

A naive way to model access to a shared variable using
regular unfoldings is to associate each variable with a con-
dition and then every read or write event consumes it and
produces a new condition representing the variable (see Fig. 3
(d)). The executions of the simple program of Fig. 1 with a
shared variable and two threads reading it can be modeled by
the unfolding (a). This unfolding shows that the naive approach
only allows serialized access to the shared variable, i.e. it
contains two possible executions r1 ·r4 and r2 ·r3 represented
by its configurations.

To avoid the serialized access of reading operations, shared
variable conditions can be duplicated for each thread: each
shared variable is modeled by n conditions, where n is the
number of threads in the program. A write transition is made
to access each of the n copies while a read transition accesses
only the local copy belonging to the thread performing the
read (see Fig. 3 (e) and (f)). This approach is known as
place replication [11] and it has the effect that two concurrent
reads of the same shared variable become independent. Fig. 1
(b) shows the unfolding modeling the program with place
replication; the events representing the read actions become
independent and the two test executions of the program r5 · r6
and r6 ·r5 can be obtained as linearizations of its configuration
{r5, r6}. This unfolding contains only two events instead of
four as in the naive case.

(a) local branch

pc

pc′ pc′′

true false

(b) acquire lock

pc

pc′

l

(c) release lock

pc

pc′
l

(d) naive read and write
contextual write

pc

pc′

x

x

(e) read with place replication

pc

pc′

xi

xi

(f) write with place replication

pc

pc′

x1

x1

xn

xn

. . .

. . .

(g) contextual read

pc
x

pc′

Fig. 3: Modeling programs with unfoldings.

One of the disadvantages of the place replication technique
is that it forces to fix the number of threads in the program and
thus dynamic creation of threads is not supported. Programs
with thread creation can be modeled by using contextual nets
(see [2]).

B. Modeling programs with contextual occurrence nets.

Even if the place replication technique allows to represent
the independence between concurrent reads, it may generate
unnecessary instances of a write operation. Consider the
program of Fig. 2 where two threads read a shared variable
and a third one writes it. The unfolding (a) is the one obtained
using place replication and the constructs (e) and (f) of Fig. 3.
There are four different instances w1-w4 of the write operation
which correspond to the four ways to interleave the access to
the shared variable.

In order to obtain a smaller unfolding, contextual nets can
be used. The shared variable places are no longer replicated for
each thread (recall that the reason for the place replication is
to make two concurrently enabled read operations independent
in the unfolding). With contextual nets read operations can be
modeled using read arcs. The construct for a write transition is
the same as in the naive approach with regular nets while read
transitions have shared variable conditions in their context (see
Fig. 3 (d) and (g)). The program of Fig. 2 can be modeled
by the c-net (b). Notice that the four instances of the write
operation are replace by a single write event, but the four ways
to interleave the executions of the program are still represented
by the four configurations of the c-net.

C. Program unfolding

Sections III-A and III-B explain how to model a program
using regular and contextual unfoldings representing all the
possible ways in which operations of the program can be
interleaved. Each unfolding represents symbolically all the
possible executions of the program, i.e. any linearization of a

configuration represents an execution of the program. Even if
a program has different representations (for example the nets
obtained using place replication or the contextual approach)
any test execution of the program can be obtained as the
linearization of some configuration in any unfolding. For
each of the unfolding representations, every maximal (w.r.t
set inclusion) configuration corresponds to a Mazurkiewicz
trace of the program. Since read operations are considered
independent, the program of Fig. 2 has four Mazurkiewicz
traces representing the final states of the program

b = 0, c = 0 b = 0, c = 5 b = 5, c = 0 b = 5, c = 5

This traces correspond to the four maximal configurations of
both unfolding in Fig. 2:

{r3, r4, w2}, {r3, w3, r1}, {r4, w4, r6}, {w1, r2, r5}

for the regular unfolding (a), and

{r1, r3, w}, {r1, w, r2}, {r3, w, r4}, {w, r4, r2}

for the contextual one (b).
If one is interested only in the local states of the threads, it

can be observed that Thread 1 and Thread 3 only have
two local states: b = 0 or b = 5 and c = 0 or c = 5. Partial
order reduction techniques preserving Mazurkiewicz traces do
not take into account local states of threads and therefore any
such algorithms would explore at least four executions paths
for the this program. In the next section we show how to
reduce the number of test executions in the program while
covering every local state of the threads.

IV. MINIMAL TEST SUITES BASED ON UNFOLDINGS

The goal of this section is, given an unfolding representation
of a multithreaded program, compute the minimal test suite
covering every event. We show that this problem is NP-
complete in the size of the unfolding and solve it using an

SMT-encoding. If in addition the information about which
statements are executed by each event is given, the encoding
can be modified to minimize the test suite covering every
statement of the program.

A. Events covering

Given the unfolding representation of a multithreaded pro-
gram, we define the following decision problem to cover the
unfolding with a fixed number of test executions.

Definition 1 (EVENTS-COVER). Given an unfolding U =
(B,E,G) and an integer k, decide whether there exists a set
{C1, . . . , Ck} of configurations of U covering E.

Deciding if there exists a set of k configurations that covers
every event in the unfolding is an NP-complete problem.

Theorem 1. EVENTS-COVER is in NP.

Proof: We create a nondeterministic algorithm with
a polynomial running time. The requirements for the set
{C1, . . . , Ck} are:
• each Ci is a configuration,
•

⋃
i≤k

Ci = E

Algorithm 1 first guesses a set of k subsets of E, thus the
amount of nondeterminism needed is polynomial in the size
of the inputs. Then the algorithms checks that the conditions
mentioned above are fulfilled. All the loops of the program
have a polynomial upper bound on the number of iterations
in the size of the input (both k and ni are smaller than |E|),
and thus the program has a polynomial running time after
the nondeterministic initial guess has been made. To sim-
plify the presentation we use two subroutines CAUSALLY -
CLOSED(e, C) and CONFLICT (e, e′). The first one re-
turns true iff all the events in the past of e are in C; the
other returns true iff events e and e′ are in conflict. For
regular unfolding, the latter can be checked by traversing the
past of both events and checking if there exist e1 ≤ e and
e2 ≤ e′ such that •e1 ∩ •e2 6= ∅. For a contextual unfolding,
we need to check that there exist no cycles of asymmetric
conflict containing e and e′: the direct graph G = (V,A) were
V = E and (e, e′) ∈ A iff e↗ e′ is polynomial w.r.t the size
of the unfolding and we can detect cycles with complexity
O(|V |+ |A|).

Theorem 2. EVENTS-COVER is NP-hard.

Proof: We show a reduction from the graph coloring
problem to EVENTS-COVER; since a regular unfolding is
also a contextual one with an empty context, we construct
a regular unfolding in the reduction. Let G be a graph with
set of vertices V and edges A, we construct an unfolding
U = (B,E,G) in the following way:
• for each each vertex v ∈ V there is an event ev in E and

conditions cv, c
′
v in B such that cv ∈ •ev and c′v ∈ ev

•

• for each edge a = (v1, v2) ∈ A there is a condition ca in
B with ca ∈ •ev1 ∩ •ev2 .

Algorithm 1
Input: An unfolding net U = (B,E,G) and and integer k
Output: Accept/reject.

1: Guess a set of sets {C1, . . . , Ck} where Ci =
{ei1, . . . eini

} ⊆ E
2: for i := 1 . . .k do
3: for j := 1 . . .ni do
4: if ¬CAUSALLY -CLOSED(eij , Ci) then reject
5: for l := 1 . . .ni do
6: if CONFLICT (eij , e

i
l) then reject

7: for e ∈ E do
8: found := False
9: for i := 1 . . .k do

10: if e ∈ Ci then found := True

11: if ¬found then reject
12: accept

The resulting unfolding has not causal dependencies, i.e. ≤
= ∅, and ev1# ev2 ⇔ (v1, v2) ∈ A (which is equivalent
to ev1 co ev2 ⇔ (v1, v2) 6∈ A). It is easy to see that the
created net is linear in the size of the input graph and it is
also straightforward to generate it in polynomial time.

We claim that G is k-colorable iff E is covered with k
configurations.
⇒) Given a coloring of G, let Vi be the set of vertices

colored by i. For every pair of vertices v1, v2 ∈ Vi we
know that (v1, v2) 6∈ A (if they have the same color,
they cannot be adjacent) and therefore Vi represents a
conflict-free set of events. Since ≤ = ∅, every Vi rep-
resents a causally-closed set and it follows it represents
a configuration. Since every vertex is colored using k
colors, every event is covered with just k configurations.

⇐) Suppose we have a set of configurations {C1, . . . , Ck}
such that every event e ∈ E belongs to at least one
configuration and let ev1 , ev2 be two events of Ci.
Events in the same configuration are not in conflict,
then (v1, v2) 6∈ A and v1, v2 can be colored with the
same color. It follows that for every event ev in Ci the
vertex v can be colored by i. We need one color per
configuration (only k) and since every event belongs to
at least one configuration, every vertex is colored; i.e.
G is k-colorable.

Fig. 4 shows an example of the reduction from graph col-
oring to EVENTS-COVER. The graph has a clique (complete
maximal subgraph) of size 3 composed by vertices {v1, v2, v3}
and therefore at least 3 colors are needed. The Figure shows a
way to color the vertices using 3 colors and thus it is minimal.
We have C1 = {v1, v4}, C2 = {v2, v5}, C3 = {v3} and
therefore the sets {e1, e4}, {e2, e5}, {e3} can be used as the
configurations to cover the net.

Example 3. Consider the program of Fig. 2. Clearly if we
represent the program with a regular unfoldings and the naive

v1

C1

v2 C2

v3

C3

v4

C1

v5C2

e

a

b

c

d

c1

c′1

c2

c′2

c3

c′3

c4

c′4

c5

c′5

ca cb

cc

cd

ce

e1 e2

e3

e4e5

Fig. 4: Reduction of graph coloring to EVENTS-COVER.

approach, this representation would explicitly enumerate all
the six possible interleavings accessing the place representing
the shared variable; events representing the write operation
would be pairwise in conflict and therefore at least 6 execu-
tions are needed to cover every event using this representation.
A similar analysis can be done in the unfolding of Fig. 2 (a)
and at least 4 executions are needed to cover events w1-w4. If
one considers the contextual representation of the program in
Fig. 2 (b), every event can be covered executing, for example,
all the reads first (r1 · r3 · w) and executing the write before
any read (w ·r2 ·r4). We will see that these are not only lower
and upper bounds respectively for the number of executions,
but actually the minimal number of test cases needed to cover
the unfoldings.

B. SMT-encoding of EVENTS-COVER

This section shows how to encode the EVENTS-COVER
problem for regular and contextual unfoldings with SMT based
on the encodings of their configurations [12], [13], [14] and
additional formulas that capture the path constraints.

In order to cover every event of the unfolding with k
configurations, we need to

• find k configurations (this can be done by coping k times
the configuration encoding) such that

• every event belongs to at least one configuration

Given an unfolding U = (B,E,G) and an integer k, we
encode the EVENTS-COVER problems using variables ϕe,i

for each event e ∈ E and i ≤ k.
The following formula represent causal dependence; for

each event e and each i ≤ k:

ϕe,i ⇒
∧

e′∈•(•e)

ϕe′,i (C1)

Since the constraints generated at each branching point are
mutually exclusive (one event represents the constraint being
true and the other the constraint being false as shown in Fig. 3
(a)), the variables representing inputs of the program need to
be renamed. Let gi be the constraint g where each variable

input have been renamed as inputi. For each branching event
e with a symbolic constraint g and each i ≤ k we have:

ϕe,i ⇒ gi (C2)

The following constraint encodes conflict-freeness for reg-
ular unfoldings; for each condition c, each event e ∈ c• and
each i ≤ k:

ϕe,i ⇒
∧

e′∈c•\{e}

¬ϕe′,i (C3)

Finally each event should be part of at least one configura-
tion; for each event e: ∨

1≤i≤k

ϕe,i (EC)

For regular unfoldings the EVENTS-COVER problem can
be encoded as the conjunction of formulas (C1)-(C3),(EC). To
extend the encoding for contextual nets, we need to consider
read arcs: if a read event is fired, the write event that has most
recently updated the value being read must have been fired.

For each read event e and each i ≤ k we have:

ϕe,i ⇒
∧

e′∈•e
ϕe′,i (R1)

An encoding consisting of formulas (C1)-(C3) and (R1)
is an over-approximation of the configurations because the
encoding does not take into account possible ↗-cycles. To
accurately capture configurations of a contextual unfolding,
additional constraints are needed that make the translation
unsatisfiable if a configuration contains a ↗-cycle. To com-
plete the translation, let ne,i be a natural number associated
with event e in configuration i ≤ k. Intuitively the numbers
associated with events describe the order in which they must be
fired in they corresponding configurations. The firing order that
eliminates ↗-cycles can then be expressed with the following
formulas.

For each event e and each i ≤ k:

ϕe,i ⇒
∧

e′∈•(•e)∪•e

ne′,i < ne,i (R2)

For each read event e, write event e′ and each i ≤ k:

ϕe,i ⇒
∧

•e′∩e 6=∅

ne,i < ne′,i (R3)

The formulas above have the following meanings: for any
event e, all the events that put tokens in its preset and context
should be fired before e; and whenever a condition in the
preset of a write event is part of the context of a read event,
the read should be fired before the write.

When the acyclicity constraints are encoded in SAT [13],
[15], the size of the encoding is O(n log n) in the best case.
However the formulas (R2) and (R3) are linear in the size of
the unfolding using the expressivity of SMT.

Example 4. Example 3 gives lower bounds to the EVENTS-
COVER problem using the regular unfoldings of the program
in Fig. 2. Using the encoding (C1)-(C3),(EC) for k = 6 and

k = 4 respectively, we obtain that the formulas are satisfiable
and then the minimal numbers of executions to cover every
event using the naive and place replication approach are
respectively 6 and 4. Example 3 also gives a possible solution
to cover every event in the contextual representation with two
executions. If the encoding (C1)-(C3),(R1)-(R3),(EC) is used
with k = 1, the formula is unsatisfiable and the unfolding
cannot be covered with only one execution. We can conclude
that the given solutions are optimal.

C. Statement Coverage

The encoding above shows how to cover the unfolding
representation of a multithreaded program. However, different
representations give minimal test suites of different size for
the same program. If in addition of the unfolding we have
information about which statements are covered by each event,
we can minimize the test executions not to cover each event,
but rather each statement of the program at least once. Suppose
we have a mapping stat from the statements of the program to
the set of events in its unfolding that execute those statements.
A statement j is covered if any of the events in stat(j) is
covered by some configuration of the unfolding. Condition
(EC) can be replaced by the following formula; for every
statement j: ∨

e∈stat(j)
i≤k

ϕe,i (SC)

The formula above does not require that every event is
covered as in the case of EVENTS-COVER, but at least one
event should be covered for each statement. In general fewer
test executions are needed to cover every statements than to
cover every event.

Example 5. Suppose the following labeling relates every event
in Fig. 2 (a) with the statements of the program:

statement events
local b = x r1, r2, r3

x = 5 w1, w2, w3, w4

local c = x r4, r5, r6

Using formulas (C1)-(C3),(SC) for k = 1 we obtain
the encoding of Fig. 5 which is satisfiable for example for
ϕw1 , ϕr2 , ϕr5 and thus every statement can be covered with
only one test execution. The same result can be obtained using
the naive representation of the program and the contextual one.

The EVENTS-COVER problem is stated for a particular
unfolding of the program and allows different minimal test
suites depending on the given representation of the program.
However, to achieve statement coverage we reason about
different ways to interleave the statements of the program.
Since every interleaving is represented symbolically in every
unfolding, the size of a minimal test suite covering every
statement of the program is the same despite its unfolding
representation.

Causal clauses: Conflict-freeness:
ϕw2 ⇒ ϕr3 ∧ ϕr4

ϕw3 ⇒ ϕr3

ϕw4
⇒ ϕr4

ϕr1 ⇒ ϕw3

ϕr2 ⇒ ϕw1

ϕr5 ⇒ ϕw1

ϕr6 ⇒ ϕw4

ϕw1
⇒ ¬ϕr3 ∧ ¬ϕr4

ϕw3
⇒ ¬ϕr4

ϕw4
⇒ ¬ϕr3

ϕr3 ⇒ ¬ϕw1
∧ ¬ϕw4

ϕr4 ⇒ ¬ϕw1 ∧ ¬ϕw3

Statement covering:
ϕr2 ∨ ϕr3 ∨ ϕr6

ϕr1 ∨ ϕr4 ∨ ϕr5

ϕw1 ∨ ϕw2 ∨ ϕw3 ∨ ϕw4

Fig. 5: SMT-encoding for statement covering using the place
replication representation.

D. Experiments

We compare the test suites obtained by the testing algo-
rithms of [1] and [2] with the ones obtained by the encodings
to execute every event of the unfolding (using place replication
and contextual nets) and every statement of the program. The
encodings were run with the Z3 SMT-solver [16] using an
incremental approach to reuse the information computed by
the solver for smaller instances of the problem.

We have conducted the experiments using several bench-
marks. Filesystem is used for evaluation of the DPOR algo-
rithm in [17]. Parallel Pi is a program that uses the divide and
conquer technique; it divides a task to multiple threads and
then merges the results of each computation. The synthetic
benchmark performs arbitrarily generated sequences of oper-
ations. Dining implements the dining philosophers problem.
The Fib benchmark is from the 1st International Competition
of Software Verification (SV-COMP); it has been modified to
bound the times some loops are executed. For benchmarks that
have multiple versions, the versions are similar but involve
more threads or increase in complexity.

The result of our experiments are summarized in Table I.
As the number of test executions performed by the algorithms
in [1] and [2] can vary depending on the order in which the
execution paths are explored, the experiments were repeated
10 times and the average results are reported.

The statements of the programs can be covered with less
than two executions; since the number of executions is small,
the solver does not consume much computational time to find a
solution. The number of obtained executions is the same using
the regular and contextual representation for the program,
however the time results given in the table are those obtained
with the contextual unfolding.

For the Filesystem benchmarks, every event in both un-
foldings can be covered with just two executions showing
that the result of the algorithms in [1] and [2] are close to
the optimal. For the rest of the benchmarks, the number of
executions grows and the encodings does not scale; the table
shows the biggest instance of k for which the solver found a

TABLE I: Experimental results.

Benchmark
Statement Contextual Event PR Event
coverage unfolding coverage unfolding coverage

Tests Time Tests Time Tests Time Tests Time Tests Time
Filesystem 1 2 0m 0s 3 0m 0s 2 0m 0s 3 0m 0s 2 0m 0s
Filesystem 2 2 0m 0s 3 0m 0s 2 0m 0s 3 0m 0s 2 0m 0s
Parallel Pi 1 1 0m 0s 24 0m 0s >11 29m 31s 24 0m 0s >11 19m 17s
Parallel Pi 2 1 0m 0s 120 0m 0s >9 2m 37s 120 0m 0s >10 9m 21s
Parallel Pi 3 1 0m 4s 720 0m 2s >7 2m 14s 720 0m 2s >7 0m 53s

Synthetic 2 0m 2s 762 0m 1s >8 2m 23s 921 0m 2s >9 29m 12s
Dining 1 0m 1s 798 0m 3s >8 4m 38s 798 0m 3s >9 29m 43s
Fib 1 1 0m 25s 4950 0m 17s >8 15m 44s 19605 0m 3s >6 5m 35s
Fib 2 1 2m 1s 14546 0m 54s >5 28m 53s 59908 0m 10s >3 0m 39s

solution in less than 30 minutes and the corresponding time
for obtaining the answer for that instance.

The table shows that the encoding can find solutions with
not much computational time for most of the problems when
less than 8 test executions are needed. The computational time
for k > 8 usually grow too fast (see for example Parallel Pi
1); in the case of the Fib benchmark, the encoding approach
is slow even for small instances of k since the encoding of
the configurations is too big.

V. MINIMAL TEST SUITES FOR PETRI NETS

Last sections shows how to cover a multithread program
by covering the events of its unfolding representation. The
proposed encoding can be used for any finite unfolding and
not only those constructed from a multithreaded program. As
a corollary of the results of last section, we prove that covering
every transition of a safe Petri net with a given number of test
executions is NP-hard in the size of a prefix of its unfolding.
We study first the problem for acyclic Petri nets and explain the
implications of relaxing the acyclicity assumption by adding
cut-off events to truncate the unfolding construction.

A. Covering the transitions of an acyclic Petri net

Whenever a safe and acyclic Petri net is unrolled, the
obtained unfolding is finite and the EVENTS-COVER problem
can be modified to find configurations which may not cover
every event, but at least one instance or representative of each
transition in the original net.

Definition 2 (TRANSITIONS-COVER). Given a net N =
(P, T, F,M0), one unfolding U and an integer k, decide
whether there exists a set {C1, . . . , Ck} of configurations of
U such that

⋃
i≤k

l(Ci) = T .

Covering all the transitions of a net with a given number
of executions is an NP-complete problem, the in NP result is
trivial by the same configuration guessing argument as before.

Theorem 3. TRANSITIONS-COVER is NP-hard.

Proof: Since the occurrence net for the graph coloring
reduction is an acyclic net and coincides with its unfolding,
covering all the events of an unfolding U can be reduced
to solve the TRANSITIONS-COVER problem when U is

interpreted both as the net and its unfolding. The result is
trivial using this remark.

When the Petri net is acyclic, its unfolding is finite and
the SMT-encoding proposed in last section can be modified to
solve the TRANSITIONS-COVER problem. Since we have
information about the original net and every event can be
related with its original transition by the labeling l, condition
(EC) can be replaced by the following formula; for each
transition t in the original net:∨

l(e)=t
i≤k

ϕe,i (TC)

The TRANSITIONS-COVER problem can be encoded by
the conjunction of (C1)-(C3),(R1)-(R3),(TC) for contextual
nets (constraints (R1)-(R3) can be removed for regular Petri
nets). The constraint (TC) is weaker than (EC) since it does
not state that every event should be part of a configuration, but
one representing every transition. This implies that the number
of a test executions to cover every transition is usually smaller
than the number of executions to cover every event.

B. Adding cut-off events

If we remove the acyclicity restriction from the Petri net,
we need to truncate the unfolding to obtain a finite prefix.
Cut-off events can be used to obtain finite prefix of the
unfolding; cut-off events stop the unfolding algorithm since
no new events are added after them. Different notions of cut-
off have been proposed in the literature [18], [19], [20] and
each of them generate a different prefix of the unfolding. Fig. 6
presents a cyclic Petri net together with two finite prefixes of
its unfolding where cut-off events are displayed in grey. If
one considers the unfolding (b) to solve the TRANSITIONS-
COVER problem, two test executions (e1 · e3 and e2) are
needed to cover every transition in the original net. However
if one consider the unfolding (c), the transitions of the original
net can be covered with the single execution e1 · e3 · e5. This
example shows that the minimality of the test suite does not
depend on the net itself, but on the prefix of the unfolding
we consider. A weaker notion of cut-off may generate bigger
prefixes but those may allow to cover every transition with
fewer test executions.

t1 t2t3

(a)

e1t1 : e2 : t2

e3t3 :

(b)

e1t1 : e2 : t2

e3t3 :

e4t1 : e5 : t2

e6t3 :

(c)

Fig. 6: A Petri net (a) and two prefixes (b) and (c) of its
unfolding.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have shown how to use different unfolding
representations to generate test suites of a multithreaded pro-
gram. We showed that the problem of covering all the events in
the unfolding is NP-complete and proposed an SMT-encoding
to solve it. Since different unfolding representations of the
program generate different minimal test suites, we modified
the encoding to cover all the statements of the problem; for
such problem the minimality of the test suite does not depend
on the chosen modeling. We run several experiments on a set
of benchmarks which show that the encodings may not scale
to cover every events for programs with a lot of branching,
but it does for the statement coverage problem.

We also showed that covering all the transitions of a safe
and terminating Petri net is also NP-complete in the size of
its unfolding and show that bigger prefixes of the unfolding
(when the original Petri net does not terminate) may generate
smaller test suites.

In order to remove the acyclicity termination assumption
of the program, we need to define a notion to cut-off the
unfolding procedure. In addition of the consequences of doing
so explained in the last section, our method need to be
modified to keep track of global states of the program that
have already been visited. Doing this requires keeping track of
the local symbolic states of threads and can be very expensive
especially when it needs to be determined if a symbolic state
subsumes another. Lightweight approaches [9] may therefore
be more practical.

Acknowledgment: we would like to thankfully acknowl-
edge the funding by the Academy of Finland projects 139402
and 277522 and the Research Training Group PUMA of the
German Research Council.

REFERENCES

[1] K. Kähkönen, O. Saarikivi, and K. Heljanko, “Using unfoldings in
automated testing of multithreaded programs,” in IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE’12, Essen,
Germany, September 3-7, 2012, M. Goedicke, T. Menzies, and M. Saeki,
Eds. ACM, 2012, pp. 150–159.

[2] K. Kähkönen and K. Heljanko, “Testing multithreaded programs with
contextual unfoldings and dynamic symbolic execution,” in 14th Inter-
national Conference on Application of Concurrency to System Design,
ACSD 2014, 2014.

[3] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated
random testing,” in Proceedings of the ACM SIGPLAN 2005 Conference
on Programming Language Design and Implementation, Chicago, IL,
USA, June 12-15, 2005, V. Sarkar and M. W. Hall, Eds. ACM, 2005,
pp. 213–223.

[4] K. Sen, “Scalable automated methods for dynamic program analysis,”
Doctoral Thesis, University of Illinois, 2006.

[5] A. Farzan, A. Holzer, N. Razavi, and H. Veith, “Con2colic testing,” in
Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering,
ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26,
2013, B. Meyer, L. Baresi, and M. Mezini, Eds. ACM, 2013, pp.
37–47.

[6] V. Diekert and G. Rozenberg, Eds., The Book of Traces. World Scientific
Publishing Co., Inc., 1995.

[7] P. Godefroid, Partial-Order Methods for the Verification of Concurrent
Systems - An Approach to the State-Explosion Problem, ser. Lecture
Notes in Computer Science. Springer, 1996, vol. 1032.

[8] P. A. Abdulla, S. Aronis, B. Jonsson, and K. F. Sagonas, “Optimal
dynamic partial order reduction,” in The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’14, San Diego, CA, USA, January 20-21, 2014, S. Jagannathan and
P. Sewell, Eds. ACM, 2014, pp. 373–384.

[9] K. Kähkönen and K. Heljanko, “Lightweight state capturing for auto-
mated testing of multithreaded programs,” in Tests and Proofs - 8th
International Conference, TAP 2014, Held as Part of STAF 2014, York,
UK, July 24-25, 2014. Proceedings, ser. Lecture Notes in Computer
Science, M. Seidl and N. Tillmann, Eds., vol. 8570. Springer, 2014,
pp. 187–203.

[10] U. Montanari and F. Rossi, “Contextual nets,” Acta Inf., vol. 32, no. 6,
pp. 545–596, 1995.

[11] A. Farzan and P. Madhusudan, “Causal atomicity,” in Computer Aided
Verification, 18th International Conference, CAV 2006, Seattle, WA,
USA, August 17-20, 2006, Proceedings, ser. Lecture Notes in Computer
Science, T. Ball and R. B. Jones, Eds., vol. 4144. Springer, 2006, pp.
315–328.

[12] J. Esparza and K. Heljanko, Unfoldings - A Partial-Order Approach to
Model Checking, ser. Monographs in Theoretical Computer Science. An
EATCS Series. Springer, 2008.

[13] C. Rodrı́guez, “Verification based on unfoldings of Petri nets with read
arcs,” Thèse de doctorat, Laboratoire Spécification et Vérification, ENS
Cachan, France, Dec. 2013.

[14] K. Kähkönen, “Automated systematic testing methods for multithreaded
programs,” Doctoral Dissertation, School of Science, Aalto University,
2015.

[15] V. Khomenko, A. Kondratyev, M. Koutny, and W. Vogler, “Merged
processes: a new condensed representation of petri net behaviour,” Acta
Inf., vol. 43, no. 5, pp. 307–330, 2006.

[16] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in
Tools and Algorithms for the Construction and Analysis of Systems, 14th
International Conference, TACAS 2008, Budapest, Hungary, March 29-
April 6, 2008. Proceedings, ser. Lecture Notes in Computer Science,
C. R. Ramakrishnan and J. Rehof, Eds., vol. 4963. Springer, 2008, pp.
337–340.

[17] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for
model checking software,” in Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2005, Long Beach, California, USA, January 12-14, 2005, J. Palsberg
and M. Abadi, Eds. ACM, 2005, pp. 110–121.

[18] K. L. McMillan, “A technique of state space search based on unfolding,”
Formal Methods in System Design, vol. 6, no. 1, pp. 45–65, 1995.

[19] J. Esparza, S. Römer, and W. Vogler, “An improvement of McMillan’s
unfolding algorithm,” Formal Methods in System Design, vol. 20, no. 3,
pp. 285–310, 2002.

[20] V. Khomenko, M. Koutny, and W. Vogler, “Canonical prefixes of petri
net unfoldings,” in Computer Aided Verification, 14th International
Conference, CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Pro-
ceedings, ser. Lecture Notes in Computer Science, E. Brinksma and
K. G. Larsen, Eds., vol. 2404. Springer, 2002, pp. 582–595.

