t.)

Check for
Updates

CAAT: Consistency as a Theory

THOMAS HAAS, TU Braunschweig, Germany
ROLAND MEYER, TU Braunschweig, Germany
HERNAN PONCE DE LEON*, Huawei Dresden Research Center, Germany

We propose a family of logical theories for capturing an abstract notion of consistency and show how to
build a generic and efficient theory solver that works for all members in the family. The theories can be used
to model the influence of memory consistency models on the semantics of concurrent programs. They are
general enough to precisely capture important examples like TSO, Power, ARMv8, RISC-V, RC11, IMM, and
the Linux kernel memory model. To evaluate the expressiveness of our theories and the performance of our
solver, we integrate them into a lazy SMT scheme that we use as a backend for a bounded model checking
tool. An evaluation against related verification tools shows, besides flexibility, promising performance on
challenging programs under complex memory models.

CCS Concepts: « Theory of computation — Logic and verification; Concurrency; Verification by model
checking.

Additional Key Words and Phrases: Weak memory models, program verification, bounded model checking.

ACM Reference Format:
Thomas Haas, Roland Meyer, and Hernan Ponce de Leén. 2022. CAAT: Consistency as a Theory. Proc. ACM
Program. Lang. 6, OOPSLAZ2, Article 129 (October 2022), 31 pages. https://doi.org/10.1145/3563292

1 INTRODUCTION

Modern programming languages like C11, Rust, and Kotlin are difficult to analyze for state-of-the-art
verification technology. The problem is not merely one of verification lagging behind, but a shift on
the programming language side that verification has a hard time to reflect. Modern languages move
towards programming abstractions that give the programmer detailed control over the execution
environment. Co-routines can modify the scheduling, C11 atomics come with ordering and visibility
guarantees about their execution, and the memory is managed by reclamation schemes [Dang et al.
2020; Elizarov et al. 2021]. Classically, verification technology ignores all this: the scheduling is
modeled by non-determinism, instructions are executed in program order, and there is a garbage
collector reclaiming unused memory. When using this verification technology to analyze a program
in a modern language, we may miss bugs or, less critically, judge correct programs as faulty. The
problem becomes even more pressing as the new programming abstractions have turned out to
be difficult to use (as witnessed by the repeated corrections to the C11 standard [Batty et al. 2016;
Lahav et al. 2016, 2017; Manerkar et al. 2016; Vafeiadis et al. 2015; Vafeiadis and Narayan 2013]),
and thus verification technology is badly needed.

“This research was done while the author was at Bundeswehr University Munich, Germany.

Authors’ addresses: Thomas Haas, TU Braunschweig, Germany, t.haas@tu-braunschweig.de; Roland Meyer, TU Braun-
schweig, Germany, roland.meyer@tu-bs.de; Hernan Ponce de Leén, Huawei Dresden Research Center, Germany, hernanl.
leon@huawei.com.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2022 Copyright held by the owner/author(s).

2475-1421/2022/10-ART129

https://doi.org/10.1145/3563292

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 129. Publication date: October 2022.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0002-3176-8552
HTTPS://ORCID.ORG/0000-0001-8495-671X
HTTPS://ORCID.ORG/0000-0002-4225-8830
https://doi.org/10.1145/3563292
https://orcid.org/0000-0002-3176-8552
https://orcid.org/0000-0001-8495-671X
https://orcid.org/0000-0002-4225-8830
https://doi.org/10.1145/3563292
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3563292&domain=pdf&date_stamp=2022-10-31

129:2 Thomas Haas, Roland Meyer, and Hernan Ponce de Ledn

Theories
. ____—__C N
Dp A D I [Algl t al. 2013] ! .
P R | ’ Tsat ‘ ’ TipL ‘ ’ Tpata ‘ [Poncegdzvlfeeénaet al. 2017] : %V
‘(777777777777777777777777777777777 Y
D . [150] [Power| [ARMvVS] [RISC-V] N

M i [Lkmm]| [renr] [mam] T m ‘1 K

\ -~~~ °TTeTeToTOTTETOTITIIIIIITITTTT J

Fig. 1. The BMC problem with memory models.

The verification community has taken up the challenge and made considerable progress on
incorporating aspects of the execution environment into the verification technology. For asynchro-
nous programming, formal techniques are emerging [Koval et al. 2021]. In the realm of memory
consistency, there are now tools that model the semantics of programs under Intel’s, ARM’s, and
IBM’s memory models [Abdulla et al. 2015, 2016; Alglave et al. 2013; Ponce de Leoén et al. 2020].
Also, the popular causal consistency as well as the release-acquire fragment of C11 have found
their way into tools [Abdulla et al. 2018]. For memory reclamation, reductions to verification under
garbage collection have been proposed [Meyer and Wolff 2019, 2020].

We argue that these efforts are not enough because the number of execution environments
grows much faster than the verification community can provide technology. The reason is that the
execution environment consists of several components (the scheduler, the consistency model, the
reclamation scheme), each under active development, and every combination yields a new setting.
State-of-the-art verification tools are holistic objects that have to carefully integrate every single
aspect of the program semantics.

We believe there is a need for verification technology that can be easily adapted to the execution
environment. There is a corner of verification where we find a promising flexibility in the program
semantics: bounded model checking (BMC) [Clarke et al. 2001]. BMC tools have been developed for
various classes of programs, from hardware to software and from timed systems [Audemard et al.
2002] to heap-manipulating programs [Ponzio et al. 2021]. Their flexibility in the semantics stems
from flexible backend technology. They translate verification problems to satisfiability modulo
theories (SMT) queries. SMT solvers [Barrett et al. 2009] integrate an arsenal of logical theories
that turned out to be useful to capture the program semantics.

Problem Statement. Our goal is to contribute bounded model checking technology that can prove
the correctness of a given concurrent program for an also given execution environment. We assume
correctness is formulated as a set of assertions that are part of the program. The task is thus to
either find an assertion violation or to prove that they all hold.

We will focus on the memory (consistency) model of the environment [Adir et al. 2003; Adve and
Gharachorloo 1996; Alglave et al. 2012, 2014; Batty et al. 2012; Boehm and Adve 2008; Collier 1992;
Manson et al. 2006; Pulte et al. 2018; Sarkar et al. 2011; Shasha and Snir 1988; Sindhu et al. 1992].
Traditional verification techniques for concurrent programs assume sequential consistency (SC)
[Lamport 1979], where the program executions are just the interleavings of the instructions in each
thread. Modern memory models add to this the possibility of reordering, dropping, and forwarding
instructions to different threads at different moments in time (called non-multi-copy atomicity),
resulting in a perception of the program execution that is only weakly consistent among the threads.
The memory model depends on the environment. Moreover, it changes as the desirable notion of
consistency evolves. For example, Intel and ARM processors have different memory models, and
ARMVS (the ARM memory model in version 8) is multi-copy atomic while ARMv7 is not [Pulte
et al. 2018]. Verification techniques shall not only take into account the notion of consistency, but

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 129. Publication date: October 2022.

CAAT: Consistency as a Theory 129:3

also be easily adaptable in case this notion changes. We thus target verification technology that
works relative to a given memory model M. The model defines, independently of the program, a
set of executions [M] that it considers consistent.

The program %, in turn, defines basic properties of the control and data flow that are independent
of the memory model. These properties are enough to identify the executions that fail an assertion,
denoted by [Pg]. Then, a given program % is correct under a given memory model M, if

[Pal 0 IM] =0

Our goal is to check this emptiness. If [Pg] is finite, which we assume throughout the paper, one
can compute this set of executions and filter out the ones that are inconsistent with M. This is the
approach followed by HErD [Alglave et al. 2014], which is great to understand the corner cases
of M. Unfortunately, it does not scale to large programs.

A more scalable approach is bounded model checking (BMC), Figure 1. It is well known that [Pg]
can be represented as a logical formula ®p A @ over a theory Tpas, [Alglave et al. 2013].! Here,
®p encodes the program’s control and data flow, while ®g encodes the violation of an assertion.
Also [M] can be encoded as a formula ® »(over Tsar + 7ipr.> The BMC approach to verification
then amounts to checking

TData + Tsar + Tipr, = Pp A Dgg A D pq -

If the formula is satisfiable, then some execution leads to an assertion violation. Otherwise, the
program is correct. The approach has been implemented in DARTAGNAN [Ponce de Ledn et al. 2017].
While more scalable than enumeration, DARTAGNAN still has a performance problem. The SMT
encoding is eager: all constraints of the memory model have to be translated into ® »(in one shot.
In particular for complex models like POWER or ARMV8 this results in a huge formula.

The idea behind our work is to use the flexibility of the SMT engine in the background theories
to match the flexibility of the verification problem in the consistency model. We wonder if there is
a family of theories 7y, each of them characterizing a memory model M, that allows us to get rid
of the eager encoding ® 4. Instead of having ® »(, the new theories will teach the SMT solver the
meaning of consistency-related literals. The new BMC approach would then amount to checking

Tpata + Tm ':QD(P/\CD,-‘,

We refer to this as a lazy SMT encoding, because the theory literals are not eagerly compiled to
other theories. The research problem we tackle is thus:

Can we devise a family of logical theories Ty expressive enough to capture practical
memory models and can we give a generic and efficient solver for all members in the family?

Before we elaborate on our contribution, it is appropriate to compare this goal to related works
in the literature. The recent [Fan et al. 2022; He et al. 2021] presents a novel logical theory that is
expressive enough to reflect the consistency constraints of SC, TSO, and PSO, and at the same time
admits very efficient theory solving. The theory solver is the basis for DEAGLE, the first bounded
model checker that is memory model-aware and relies on a lazy encoding of the form we want to
achieve. The performance is amazing: with its first participation, DEAGLE won the concurrency
category in the competition for software verification [Beyer 2022].% Still, there is a crucial difference
between our development and [Fan et al. 2022; He et al. 2021]. We do not want a solver for a

! Data might be, e.g., integer arithmetic or bitvectors.

291 is the theory of integer difference logic, which is commonly used to compactly formulate acyclicity/scheduling
constraints.

Shttps://sv-comp.sosy-lab.org/2022/.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 129. Publication date: October 2022.

129:4 Thomas Haas, Roland Meyer, and Hernan Ponce de Ledn

fixed theory, but we are interested in having a language of consistency theories that we can all
solve. This makes the problem different in nature. The DEAGLE development can hardcode the
consistency model. Our work is language driven, every computation has to work along the syntax
of the consistency model at hand.

The second competitor is first-order relational logic [Jackson 2000]. It is a competitor because our
language for consistency models will be based on recursively defined relations as first pioneered
by Alglave et al. [2016]. Our algorithmic contributions all refer to this recursion, from the check for
theory satisfiability to the theory explanation. The only recursive construct that has been studied
in relational logic is transitive closure. While it is known that linear (in the relational composition
operator) memory models can be translated to transitive closure, important models like the Linux
kernel memory model [Alglave et al. 2018] and PowER [Mador-Haim et al. 2012] are non-linear,
and replacing the recursion by an unwinding has turned out highly impractical [Bornholt and
Torlak 2017].

To sum up, despite the recent success of DEAGLE and the body of literature on relational logic,
there is a strong motivation to pursue the research question we propose.

Contribution. We present a family of theories for capturing the influence of an execution envi-
ronment on the program semantics (Section 2). We devise a subset of the family that is expressive
enough in practice and algorithmically appealing (Section 3). We give algorithms to efficiently
check theory satisfiability and generate theory explanations if satisfiability fails (Section 4). These
two features are enough to integrate our theories into an offline SMT scheme, where a SAT solver
computes satisfying assignments that theory solvers check for theory satisfiability. We further
show how to balance the workload between the SAT and the theory solver and how to overcome
limitations of our development (Section 5). We prove the point of flexibility in the context of
memory consistency, where we show that our theories can capture TSO, PowERr, ARMvS, RISC-V,
IMM, RC11, and the Linux kernel memory model (LKMM). We build a BMC tool (Section 6) on top
of a lazy SMT encoding and demonstrate in an extensive evaluation (Section 7) that it performs
favorably against competitors. Finally, we discuss related (Section 8) and future work (Section 9).

2 CONSISTENCY AS A THEORY

While our problem statement focuses on memory consistency models (i.e., M), in this section we
assume a more general setting and reason about abstract consistency models (denoted by cm). We
define a language and logical theories for abstract consistency which, as we will show in Sections 6
and 7, can be used to formalize concrete memory models.

2.1 A Language for Consistency

Our language of consistency models is inspired by* CAT [Alglave et al. 2016] and defined by
the grammar in Figure 2. A consistency model is a constraint system over so-called predicates.
Predicates are either unary, called sets, or binary, called relations. New predicates can be built
from named predicates using predefined operations over them. The consistency language supports
union U, intersection N, difference \, inverse e !, transitive (and reflexive) closure o*(e*), relational
composition ;, projections domain and range, cartesian product X, and identities on sets [e].
Cartesian products are restricted to sets so that all derivable predicates have arity at most two. While
the intended semantics of most operators is obvious, the set identity operator may be less familiar:
it is defined by [s] := {(x, x) | x € s}. We use precedence rules to simplify the presentation: unary
operators take precedence over binary operators, and among the binary operators the precedence
order from high to low is cartesian product X, composition ;, and then all Boolean operators.

4A discussion about similarities and differences to CAT can be found in Section 8.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 129. Publication date: October 2022.

CAAT: Consistency as a Theory 129:5

(em) == (axm) 1 (rel) 1 (set) 1 {(cm){cm)
(axm) == acyclic({dr)) 1 irreflexive({dr)) | empty({dr)) | empty({(ds))
{dry == (rname) 1 id 1 {(dr)y U {dr) 1 {dr) 0 {dr) 1 {dr)\ {dr)

UAdr)s(dry 1 (AT dnt o dr)t 1 [(ds)] 1 (ds) X (ds)
(ds) == (sname) 1 D | domain({dr)) | range({(dr))
1 {(ds) N {ds) 1 {dsy U (ds) 1 (ds)\ (ds)
let (rname) = {dr)
let (sname) = (ds)

(rel)
(set)

Fig. 2. Grammar for consistency models.

Consistency is defined via unary predicates which we call consistency axioms over the other
predicates. Axioms are acyclicity, irreflexivity, and emptiness constraints. Named predicates may
have an associated defining equation, i.e., 1et (rname) = (dr) and 1et (sname) = (ds). Notably,
the right-hand side may again contain named predicates, making the system of defining equations
recursive. If a named predicate has no defining equation, we call it a base predicate, otherwise we
call it derived. We reserve the names D and id for distinguished base predicates; D is the unary
domain set and id is the binary identity relation which will have a special semantics. We use
the symbols b, d, and p to refer to base, derived, and arbitrary predicates; s and r for sets and
relations; and axm for axioms. Boldface symbols are used to denote vectors, e.g., b is a vector of
base predicates.

Definition 2.1. A consistency model cm is an element of the consistency language in Figure 2.

We call a consistency model normalized if (i) every right-hand side of an equation contains exactly
one operator and (ii) every axiom refers to a single named predicate. We can always achieve (i) by
introducing fresh predicates for complex expressions. Consider the equation let p; = (py; ps); Pa-
We add an intermediate defining equation let p, = p,; p; and redefine p, using let p; = p,;p,.
Similarly, we achieve (ii) for, say, acyclic(p; U p,) by introducing let p; = p; U p, and using the
axiom acyclic(p,) instead.

Figure 3 shows the memory consistency model ARMvS8 from [Pulte et al. 2018] in our language.
Note that relations like r f, co, and po do not have a defining equation; they are base relations. The
program order po relates instructions from the same thread in the order they appear (syntactically)
in the code; the read-from relation r £ connects store instructions to the load instructions that read
from them; the coherence order co is an arbitrary total order over stores to the same address, that is,
every pair of stores accessing the same address is related by co and pairs of stores accessing disjoint
memory addresses are unrelated. A typical interpretation of the coherence order co is the order in
which stores are committed to main memory (i.e., moved from a thread-local store buffer to shared
memory). This semantics has to get explicitly encoded into the memory consistency model via
axioms. In contrast, po and r f have intrinsic semantics for the program, independent of the memory
consistency model. Base sets include W and R representing store and load instructions, dom. full,
dmb . 1d, and dmb . st representing memory fences, and L and A representing instructions with
release and acquire semantics, respectively.

We explain the high-level idea of the ARMv8 memory model and how this is captured in our
consistency language. The model defines two types of orderings, the first being related to inter-
thread communication and the second to thread-local reorderings. These two types of orderings
have to agree on a single acyclic ordering ob. In the first category, the relation obs links an

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 129. Publication date: October 2022.

129:6 Thomas Haas, Roland Meyer, and Hernan Ponce de Ledn

/* Coherence-after */ /* Barrier-ordered-before x/
let ca = fr U co let bob = po; [dmb.full]; po
U [L]; po; [A]

/* Internal visibility requirement =/ U [R]; po; [dmb.1ld]; po
acyclic (po N loc) U ca U rf U [A U Q]; po
U [W]; po; [dmb.st]; po; [W]
/* Observed-by «/ U po; [L]
let obs = rfe U fre U coe U po; [L]; coi
/+ Dependency-ordered-before x/ /* Ordered-before x/
let dob = addr U data let ob = obs U dob U aob U bob U (ob; ob)
U ctrl; [W]
U (ctrl U (addr; po)); [ISB]; po; [R] /* External visibility requirement =/
U addr; po; [W] irreflexive ob
U (ctrl U data); coi
U (addr U data); rfi /% Atomic: Basic LDXR/STXR constraint to
forbid intervening writes. */
/* Atomic-ordered-before x/ empty rmw N (fre; coe)
let aob = rmw U [range (rmw)]; rfi; [A U Q]

Fig. 3. Memory consistency model ARMvS [Pulte et al. 2018].

observed event of one thread with the observing event of another thread, e.g., a load observes a
store if it reads its value (r fe stands for read-from external). ARMv8 is multi-copy atomic, meaning
there is a single shared main memory and all threads agree on their view of this shared memory.
This is witnessed by having the relations coe (coherence external) and fre (from-read external)
as part of obs. In the second category, the dependency-induced ordering dob (dob stands for
dependency-ordered before) captures data, address, and control dependencies that are preserved
by the consistency model. The ARMv8 memory model supports load speculation, which means
it can execute load instructions inside a conditional branch even before establishing whether
the branch will get executed. As a consequence, in the absence of special barrier instructions, it
only preserves control dependencies to store instructions, which is witnessed by the ctr1; [W]

fragment of dob. Then we have the ordering aob for atomics, which makes sure that events
coming from read-modify-write (rmw) operations are properly ordered. This is needed because
a single rmw-operation is modeled via a load and a store and the two operations should not be
reordered. Atomicity of the rmw-operation is guaranteed by the axiom empty(rmw N fre; coe),
which disallows memory operations of other threads to be ordered in between the load and the store.
Finally, we have the barrier-induced ordering bob for explicitly placed barriers like dbm. full
and acquire/release operations ([A]/[L]). The union of the four ordering relations (ob) has to be
acyclic for an execution to be consistent under ARMv8, formulated here via transitive closure (in
recursive form) and irreflexivity to illustrate aspects of our development.

Note that the above information about the semantics of the memory consistency model is
irrelevant for our verification approach, which only cares about the syntactic structure of the model.
This achieves a separation of concerns between systems engineering (coming up with the model)
and verification (w.r.t. the model).

2.2 Semantics

The semantics [cm] of a consistency model c¢m is defined in terms of consistent cm-structures. Let
b be the vector of base predicates. A cm-structure H = (D, Ip,) consists of a domain D and an
interpretation 7, of all base predicates over the domain D. The predicate D is such that it holds for
the whole domain and id is the identity relation on D. Let d denote the vector of derived predicates
and E the associated vector of right-hand sides of defining equations. For example, in the case of

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 129. Publication date: October 2022.

CAAT: Consistency as a Theory 129:7

rfe obs ! : :
2orfe : ob
coe dob (\Ob\) : coe -—> dob —> obs Af*ﬁva‘)b H bob %

D ofre : : :
ob;ob . : M rereneaes :
bob

Fig. 4. Snippet of ARMv8’s dependency graph (left). A fine-grained stratification (right) computed via Tarjan’s
SCC algorithm and the first step of our algorithm in Section 4.2.

the ARMv8 memory model of Figure 3, the vector of derived relations contains an entry d; = ob
with associated right-hand side E; = obs U dob U aob U bob U (ob;ob). We define the interpretation
T4 of d as a uniquely defined minimal solution of d = E(b, d). Note that the right-hand side of
this equation may not be monotonic in d in the presence of predicate differences like p; \ p,.
Memory consistency models like the Linux kernel memory model LKMM and RC11 make use of
such differences and thus we need to support them. Despite not being monotonic, the equation still
has a unique minimal solution that is defined via the canonical evaluation strategy we explain next.

Consider the equation let d; = (d; U (dy;ds)) \ dy with d; a derived relation independent
of d;. In the presence of predicate differences, the order in which the defining equations of d,
and d; get evaluated matters. A simultaneous evaluation, as done by the usual Kleene fixed-point
iteration [Nielson et al. 1999], may give a result anywhere between d = (dz \ d1)* and dy = dj \ d,
the former when d; is fully evaluated first, the latter when d; is evaluated until its fixed point,
then d; gets evaluated, and finally d;, gets evaluated once more. Seeing that d, depends on dy, the
canonical choice is to fully evaluate d; and then treat it as a constant when evaluating d,. We
formalize this evaluation strategy.

We build a directed dependency graph that has the predicate symbols of ¢m as nodes. The graph
has an edge from p, to p, if p; is part of the definition of p,, i.e., we have let p, = ... p; ...
in the consistency model. The strongly connected components (SCCs) of this dependency graph
contain predicates that are defined by mutual recursion. The dependency graph for a snippet of
ARMVS is illustrated in Figure 4 (left). Intuitively, our desired evaluation strategy evaluates the
predicates along this dependency graph and only evaluates predicates if all their dependencies
have already been fully evaluated.

The evaluation strategy can be formalized via stratifications, a concept known from Datalog
[Abiteboul et al. 1995]. A stratification of the consistency model ¢m is an ordered partitioning
of its predicates p into disjoint sets pO, e, pk , so-called strata, such that the following holds. (i)
The first stratum consists of all base predicates, p° = b. (ii) If a predicate in a stratum p’ depends
on (as defined above) a predicate in p’, then i < j. (iii) If a predicate in p/ depends negatively
via a predicate difference on a predicate in p’, then i < j. We say that cm is stratifiable if such a
stratification exists. Condition (iii) forbids recursively defined predicates to negatively depend on
another predicate from their own stratum. A non-stratifiable consistency model would be given,
e.g,by let d; =d; \ d; and let dy = dy; d,. Here, d; negatively depends on itself via d;. Such
equations may not even have a fixed point. From now on, we only consider consistency models
that are stratifiable.

Figure 4 (right) shows a possible stratification for (a fragment of) ARMvS, that has been computed
from the dependency graph by collapsing the SCCs and determining a topological ordering of
the resulting (acyclic) graph. One can show that this always yields a stratification. Moreover, the
strata obtained this way are minimally sized, meaning derived and non-recursive predicates form
singleton strata, and for recursive predicates the strata match their SCCs.

It remains to define the interpretation 74 and formulate what it means for a cm-structure to be
consistent. Let p°, ..., p* be a stratification and E, .. ., E¥ the right-hand sides of the associated
equations (p° = b has no associated equation). The desired solution Iy of d = E(b, d) is the

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 129. Publication date: October 2022.

129:8 Thomas Haas, Roland Meyer, and Hernan Ponce de Ledn

sequence of least solutions given by p*! = E™*!(p°, ..., p’, pi*!). Since p’, .. ., p* is a stratification,
each right-hand side E"*! is monotonic in p**! and only depends on p=<**!. One can show that the
solution Zgq will be the same for every stratification [Abiteboul et al. 1995], which is why we have
not chosen a particular one. We extend the cm-structure H to (D, 1) with 7 = (I, Z4). We say
that H is consistent (with c¢m) if all axioms of ¢m hold w.r.t. 7. In this case, we also call H a model
of cm. The semantics [cm] is defined as the set of all models of cm.

In the context of program verification (Section 6), cm-structures H represent program executions.
The domain consists of the executed memory instructions like read, write, and fence operations. The
base predicates contain (at least) the program order po, the read-from relation rf, and the coherence
order co. Predicates like happens-before (hb) under sequential consistency (SC) and ordered-before
(ob) under ARMVS are derived. If H is consistent as a cm-structure, then it represents an execution
of the program that ¢m, understood as a memory model, admits. In other words, in this context
[cm] is the set of all program executions admissible under cm.

2.3 From Consistency Models to Theories

Our goal is to associate with each consistency model c¢m a logical theory 7, [Enderton 1972]. To
this end, we assume the consistency model comes with a signature Xc,, = (Zconst> Xpred), Where
. const is an infinite set of constants vy, 0, ... representing domain elements, and g is a finite
set of predicate symbols corresponding to the base predicates in the consistency model. The arity
of predicate symbols is one (for sets) or two (for relations). The symbols D and id do not belong
to X ,req, because their interpretation will be fixed. We define L., as the ground fragment of the
first-order language associated with 3.p,. This means > ,-atoms are of the form p(v;,v;) and p(v;).
The sentences (closed formulas) of L, are constructed from ¥,,-atoms using the usual logical
connectives A, V, 1, —, and <. A 3,-literal is an atom or a negated atom. To fix the notation,
we use 1/ for arbitrary sentences, reserve ¢ for conjunctions of literals, and write X for the set of
constants occurring in .

We define the logical theory 7., in a model-theoretic way [Enderton 1972], as the set of sentences
that are satisfied by all models of interest. The models of interest are Herbrand structures H, meaning
the domain is given by the set of constants and each constant is interpreted by itself. There is
no restriction on how to interpret the predicates p. We say that H satisfies an atom p(v;,v;), if
H (p)(vi, vj) is true. This satisfaction relation extends to the Boolean connectives as expected.

A Herbrand structure H can be seen as a cm-structure by adding the predicates D and id to its
signature and interpreting them as intended. Then we say that H is consistent, if it is consistent as
a cm-structure. A formula ¢ is 7;,-satisfiable, if it is satisfied by a consistent 9. The theory T¢y, is
the set of sentences satisfied by all consistent H’s.

To give an example, consider the consistency model acyclic(dep Urf). Here, dep is a strict variant
of the data, address, and control dependency relation dob from above (which was ARMv8 specific).
The read-from relation rf matches each read instruction with the write from which it obtains its
value. A variant of this axiom is commonly used to forbid out-of-thin-air behaviors [Jeffrey and
Riely 2016; Lahav et al. 2017]. An example sentence in Tcyclic(depurf) is dep(v1,v2) — —rf(vz,01). It
says that if the value of v, depends on vy, then v; cannot take its value from v;. Given a formula and
a theory, our goal is to decide if the formula is satisfiable in the theory. In Tacyelic(depurf), formula
dep(vy,vy) is satisfiable, but dep (v, v2) A rf(vs, v1) is not.

3 FRAGMENTS OF CONSISTENCY MODELS AND THEIR PROPERTIES

We devise classes of consistency models that are expressive enough to capture many practically
relevant consistency models and, at the same time, constrained enough to simplify the satisfiability
checking from an algorithmic point of view.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 129. Publication date: October 2022.

CAAT: Consistency as a Theory 129:9

3.1 Domain Independence

One difficulty in checking the satisfiability of a formula ¢ is that we have to interpret all constants
in the signature, and there will usually be infinitely many of them. To overcome the problem, we
introduce the notion of domain independence. It allows us to focus on the constants that occur
in ¢ in the following sense: if we consider ¢ as a formula over this reduced signature and we find
a model, we are sure the model can be extended to a model over the original signature. The idea
of domain independence stems from database theory [Abiteboul et al. 1995], where it is used in
a semantic way. Our notion is syntactic, instead. Before we give the definition, we illustrate the
problems that may occur when extending domains.

Consider the (rather questionable) consistency model empty(ID x D \ id). The only cm-models
have a domain of either zero or one element; any structure with a larger cardinality is inconsistent,
irrespective of its interpretations of the base predicates. In particular, there are no consistent
Herbrand structures and 7., becomes a degenerate theory without models. Domain independence
forbids the free use of the predicates D and id, but expects them to be guarded by a domain-
independent predicate. To give an example, the consistency model empty(b N (D x D\ id)) is
similar to the degenerate one above but domain independent. The point is that the interpretation
of D x D\ id is effectively restricted to the domain of the interpretation of b.

Definition 3.1. The set of domain-independent predicates dip is defined inductively as follows:
dip == b dipnp 1 pndip 1 dip\p 1 dipUdip 1 dip;dip 1 dip x dip
i dip~* 1 dip* 1 dip* 1 [dip] 1 domain(dip) I range(dip).

Here, b is a base predicate different from D and id and p is any predicate. A normalized consistency
model c¢m is domain independent, if for every axiom the predicate is domain-independent.

PROPOSITION 3.2. Let cm be normalized and domain-independent with signatureX. e, = (Zconst> Zpred)-
If Y is satisfiable as a formula over (2, 3 preq), then it is satisfiable as a formula over 3,

3.2 Semi-Positivity

What if 1 is not satisfiable as a formula over (X, % ,rq)? If the proposition does not apply, the
formula may still be satisfied by a model that extends the domain beyond the constants in . This is
unfortunate from an algorithmic point of view, because there are infinitely many ways of extending
the domain. We study this phenomenon and attribute it to a violation of a property called semi-
positivity. Similar to domain independence, this notion comes from data base theory [Abiteboul et al.
1995]. For a semi-positive and domain-independent consistency model, we show that a formula ¢
is satisfiable if and only if it is satisfiable over (2, X ,r.q). We again proceed by an example before
turning to the technicalities.

Consider the consistency model empty(b; \ (bz; bz)) with by and b, base relations. Assume we
want to check the satisfiability of ¥ = by (v1,v2) A =b2(0v1,v2). We can build a Herbrand structure
for 1/ that evaluates by (v1, v2) to true and interprets b, as the empty relation. Obviously, this model
is inconsistent with the theory. Nevertheless, ¢/ is satisfiable because there is a different model which
is consistent. We pick a new element v; and extend the interpretation of b, to include b, (v;,v3) and
b (v3,v2). The crux in this example is the use of the difference operator over a derived predicate
(when normalizing, by; b, yields a new derived predicate d).

Definition 3.3. A normalized consistency model cm is called semi-positive if, in all equations of
the form let p; = p; \ p,, the predicate p, is base.

The problematic consistency model discussed above is not semi-positive but, e.g., empty(b; \ bz)
is. Semi-positivity makes it impossible to repair an inconsistent Herbrand structure by enlarging

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 129. Publication date: October 2022.

129:10 Thomas Haas, Roland Meyer, and Hernan Ponce de Ledn

the domain and extending the interpretation of predicates to this larger domain. Phrased positively,
a Herbrand structure can only be made consistent by enlarging the interpretation of predicates
within the domain. This frees us from the worrisome infinity mentioned in the beginning and leads
to the following theorem.

THEOREM 3.4. Let cm be normalized, domain-independent, and semi-positive with signature 3, =
(Zconst> Zpred)- Then 1 is satisfiable as a formula over %, if and only if it is satisfiable over (3, % preq)-

We explicitly give the proof as it will be the basis for our decision procedure.

Proor. We first consider the simpler case of a conjunction ¢ and then lift the result to arbitrary
formulas 1. To check satisfiability, it suffices to find a model of ¢. For this, we explore minimal
Herbrand structures H = (X, 7). The constants are just the ones occurring in ¢. The interpretation
of the base predicates is unconstrained and can be chosen arbitrarily.

There are two cases to consider. Assume a minimal structure H satisfying ¢ is consistent. Due
to domain independence, we can enlarge this model to a model over (2 const, % prea). The second
case is that all minimal structures #{ satisfying ¢ are inconsistent. We fix such a H = (X, Zp) and
show that any Herbrand structure K = (D, Z/) with a larger domain D 2 3, whose interpretation
coincides with 7, on the common domain %, must also be inconsistent. By coincide, we mean that
1, (b)ls,, = Zp(b) holds for all base predicates b. This proves the claim, as it rules out the existence
of a model for ¢ over the larger signature.

Let I = (Ip, Zq) and I’ = (1), I]) be the extended interpretations (as defined in Section 2.2) of H
and K, respectively. We prove by induction along a stratification p°, ..., p* that for all strata p’ we
have 7 (p') € I’ (pi)|2{,,, where C is to be understood pointwise. This yields the desired consequence:
any violation (e.g., a cycle) in H will also be a violation in K. In the base case p° = b, we have
I(p®=1(b)= I’ (b)ls, = I’(p°)|2¢ by the assumption. Consider now stratum i+1 with equation
ptt = EM(p%,. .., pl, p™*'). By definition, we have 7 (p*') = ux. E™ (7 (p°), ..., T (p), x), where
px denotes the least fixed point operator w.r.t. x. To complete the induction step, we argue that the
following inequality chain

I(p™) =I(p™ Nz, = (px.E* (T (p"),.... T (p"), %))ls,
C (ue BT (pO)s,» - - L (P)l5,» X)),
¢ (e EN(T(pY),.., T(p'), 25, = T’ (p*V)s,

holds. Towards this, note that 7’(p/)|5, € Z’(p’) and by the induction hypothesis we also have
I(p/) < I'(p)ls, forall j <i+1.If E*' is monotonic in all its arguments, then the inequality
chain follows from the aforementioned observation that all arguments get larger. Now consider the
case that E™*! is not monotonic. By semi-positivity, it can only be non-monotonic in b = p°. This
already justifies the first inequality, since the only non-monotonic argument 7 (p°) = 7’ (p°)|s "
does not change by the assumption. We need to justify the second inequality. Notice again that the
first argument is the only non-monotonic one, so we need to justify that enlarging this argument
outside the domain of ¢ does not reduce the interpretation 7’ (p'*!) inside the domain of ¢. By
normalization, all non-monotonic equations in stratum i + 1 are of the form let d = p \ b, where d
is in p™*1, p is in some p’/ with j < i+1, and b is a base predicate in p°. Since 7" is the interpretation
of a consistent model, it satisfies all equations and, in particular, we have 7'(d) = Z’(p) \ Z’(b).
Now observe that 7”(d)ls,, = (Z"(p) \ Z'(b))ls, = ' (p)ls, \ I’ (b)ls, = ' (p)ls, \ Z’(b), where
the last equality holds because 7’(b)|x, and Z”(b) only differ outside the domain of ¢. It follows
that enlarging 7' (b)[s,, to Z”(b) does not reduce the value of 7’(d)[s,,. We conclude that the second

inequality (ux.E*'(Z'(p°)ls,.- ... Z (p)s,» ¥))l5, € (ux.E*N(Z'(p°),..., I (p'),x))ls, holds.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 129. Publication date: October 2022.

CAAT: Consistency as a Theory 129:11

It remains to show that this reasoning generalizes to arbitrary formulas ¢ over X ,,. Suppose ¢ is
satisfiable and H is a model. We look at the finite substructure H” obtained from H by restricting it
to the domain %y To show that H’ is a model of i/, we need to show that it satisfies ¢ on the Boolean
level and that it is consistent in our theory. The Boolean satisfaction is immediate because both
H and H’ satisfy, by construction, the same set of 7;,,-literals over %y To establish consistency,
consider the conjunction of all the finitely many literals that hold in H’. This conjunction allows
us to apply the previous reasoning and conclude that H’ must be consistent. If it was not, then
by semi-positivity the original and larger model H would be inconsistent as well. This, however,
contradicts the assumption that it is a model of ¢/, and hence in particular consistent.

On the other hand, if ¢ is unsatisfiable, then it is in particular unsatisfiable by any structure
over domain Xy, since any consistent structure over that domain would be extendable to a model
over X, by domain independence. In either case, to show satisfiability over X, it suffices to show
satisfiability over (2, Zyreq), which concludes the proof.]

An interesting consequence of the proof is that to find models of a conjunction ¢ one should
analyze the associated canonical structure H,, which evaluates exactly the positive literals in ¢ to
true. This structure is interpretation-minimal in the sense that any model of ¢ (if one exists) has
interpretations at least as large as H,. This leads us to observe three different cases:

(i) Structure H,, is consistent and hence ¢ satisfiable.
(ii) Structure H,, is inconsistent and all interpretation-larger structures over the same domain
are also inconsistent. Therefore, ¢ is unsatisfiable.
(iii) Structure H,, is inconsistent but there is a consistent structure K over the same domain
satisfying ¢. Then %s interpretation of the base predicates is larger than H,,’s interpretations.

In the last case, we say H,, is repairable by enlarging its interpretations. We make use of this
trichotomy in our decision procedure in Section 4. Unless stated otherwise, we consider a normalized,
domain independent, and semi-positive consistency model cm.

4 SATISFIABILITY MODULO 7,

We propose a decision procedure for 7, and explain how to integrate it into the general framework
of Satisfiability Modulo Theories (SMT) [Barrett et al. 2009].

4.1 Satisfiability Modulo Theories

SMT problems evaluate the satisfiability of Boolean combinations of literals over logical theories
(potentially several). The predominant approach to SMT is a lazy integration [Sebastiani 2007]
of a SAT solver (usually DPLL [Davis et al. 1962; Davis and Putnam 1960]) and several theory
solvers. The SAT solver checks the satisfiability of a Boolean abstraction of the given formula (the
Boolean abstraction takes each literal for an atomic proposition). If a satisfying assignment can
be found, the theory solvers check the set of literals from their theory for satisfiability (in this
theory) [Oppen 1980]. If a theory solver detects unsatisfiability, it returns a theory explanation,
a set of literals that, together, are unsatisfiable in the theory. The SAT solver adds these literals
in negation to the formula of interest and repeats the search. Actually, this is called the offline
integration. There is also an online integration, where the SAT engine can query the theory solver
with partial assignments. Since queries from the DPLL-engine tend to be frequent in the online
integration, incrementality of the theory solver is a must-have. Incrementality means the theory
solver shall not redo all reasoning if only part of the input changes.

Our contribution is a solver for the theories 7., that we integrate into the lazy SMT framework.
We argue that incrementality is difficult to achieve in our setting, and therefore can only propose
an offline integration. The problem with incrementality is that edge deletions do not propagate

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 129. Publication date: October 2022.

129:12 Thomas Haas, Roland Meyer, and Hernan Ponce de Ledn

through fixed points. Consider the derived relation 1et d = b U d; d. Let x be the least fixed point
of the associated function f(x) = b U x; x. Imagine b gets updated to b’ = b U A, resulting in the
new function g(x) = b’ U x; x. If you iterate from the previous solution x, you get the new fixed
point x” = g*(x) = g*(L), and the fixed-point computation converges faster than starting from L.
The same incremental computation does not work for b’ = b \ A, and we do not know of any
way but to restart from L. We consider incrementality and an online integration an interesting
(but difficult) problem for future work. As our experiments show, already an offline integration
improves the state-of-the-art by up to two orders of magnitude.

4.2 A Decision Procedure for 7,

We develop a decision procedure for the satisfiability of a conjunction ¢ of 7;,-literals. An overview
R T TP TR PP PP PR PP RPPRP iS given on the left The procedure haS four StepS,

; Lazy SMT om Decision procedure | ; and we claim novel algorithmic contributions in
' : steps two and four. The first step is an initializa-
’ 1: Initialization ‘ : tion that computes a stratification of the consis-
o i tency model and sets up auxiliary data structures.
: e 1 .. . : The second step constructs the canonical struc-

v 1 2: Canonical model : -)
— l : ture H,, described at the end of Section 3.2. In
st i this process, we compute the derived predicates
_ SAT 3: Consistency following the stratification. Here, we contribute
(un)sat: solver [inconsistent | | an interesting idea: we can compute with differ-
: repl i i ences of Kleene approximants rather than full

: Theory explanation : . X A .

i Kleene approximants, an idea inspired by [Ban-

e i cilhon 1985]. Step three evaluates the structure

Fig. 5. Lazy SMT H,, for consistency in 7y, If consistent, the for-

mula is satisfiable (we just found a model) and we are done. Otherwise, H,, is not consistent and

we compute a theory explanation in step four. A typical consistency violation is a cycle in a derived

relation that contradicts an acyclicity axiom. The theory explanation determines a reason for this

cycle in terms of base predicates. The reason computation thus establishes this link between the
derived predicates and the base predicates, and is another algorithmic contribution of ours.

Step 1: Initialization. We determine the dependency relation for the consistency model at hand
and represent it as a graph. For this graph, we compute the strongly connected components using
Tarjan’s algorithm [Tarjan 1971]. Recall that Tarjan produces a topological sort of the SCCs, so
this step already gives us a stratification we can work with. We then associate with each unary
predicate a set and with each binary predicate a directed graph, called its relation graph, all initially
empty. It is worth noting that the initialization is done only once, even if the SAT and the theory
solver evaluate several assignments. The overall initialization takes time linear in the size of the
consistency model.

Step 2: Canonical Model. We populate the sets and relation graphs of the base predicates p° with
the data from 7}, the interpretation given by the SAT solver. We then proceed inductively along
the stratification to compute the interpretation Zq of the derived predicates. When computing
the minimal solution of an equation p**! = E"*1(p°, ..., pi*!), all previous solutions up to p’ have
already been computed and stored in their respective sets and relation graphs. If the current equation
system is non-recursive, then E*! will be a single operation that matches exactly one rule of the
grammar in Figure 2 (due to the normalization of ¢m). Computing the result of such operations
is trivial. The (reflexive) transitive closure could be handled by specialized algorithms [loannidis

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 129. Publication date: October 2022.

CAAT: Consistency as a Theory 129:13

and Ramakrishnan 1988]. We use a recursive formulation, instead, because we need to maintain
auxiliary information for the theory explanation.

If the equation is recursive, we solve it using a Kleene fixed-point iteration implemented with a
worklist algorithm [Nielson et al. 1999]. What is new in our worklist algorithm is that we work with
differences, as first suggested in [Bancilhon 1985]. The items in the worklist are triples (p;, Ay, p3)
with the following meaning. The elements in the set A; were added to p; and need to get propagated
to the directly dependent predicate p;. Initially, the worklist is populated with items (p, A, p,),
where p is a predicate from a previous stratum, A is the complete set of elements in p, and p, is a
dependent predicate in the current stratum. We iteratively pick items (p;, Ay, p;) from the worklist,
update p;, and compute an update A3 that we propagate to all predicates p, in the same stratum
that depend on p5 via (ps, As, p,).

The tricky aspect is to devise the update As. Assume the defining equation is let p; = p;;p,.
Let p] = p; U A; denote the new value of p,. The update (p;, Ay, p;) leads to the new value

P; = PPy = (P UAD;p, = (p1spy) U (Aspy) = psU(Aspy) = py U ((A;py) \ ps)-

Hence, As := (A1;p,) \ p; is the update that should be forwarded to the predicates p, dependent
on ps. For the remaining operators, the updates A; are computed as follows from (p;, Ay, p;):

As = A\ py=2A1\ps if p; =p,; Up, As = rng(A;) \ p; if p; = range(p,)
Az = A1 Np, if p; =p; N p, As = Ay X p, if py = p; X p,

As = Ay if ps = py’ A; = [A] if ps = [py]

As = dom(Ay) \ ps if p; = domain(p,) .

The updates based on (p,, Az, p;) are similar. The update-based computation still yields the same
Kleene approximants for the derived relations, and hence the same fixed point as the standard
Kleene iteration. We then proceed with the next stratum in the same way until all strata are covered.
The overall statement of soundness, completeness, and complexity is this.

THEOREM 4.1. The update-based worklist algorithm returns Iy. The computation of an update for a
relational composition and a cartesian product takes time O(|A| - n), where n is the size of the domain.
The remaining updates each take time O(|A|). The algorithm is guaranteed not to be less efficient than
the standard worklist algorithm, and is considerably more efficient in practice.

Step 3: Consistency. We need to check the axioms of the consistency model against the predicates
we just computed. Emptiness and irreflexivity are straightforward, for acyclicity we again use
Tarjan [Tarjan 1971]. If no axiom is violated, then ¢ is satisfiable because we just found a consistent
model H,,. If an axiom is violated, we proceed to step four.

At this point, we have all the ingredients for answering theory queries. Note that for the
complexity, cm is fixed and ¢ is the input.

THEOREM 4.2. Given a conjunctive query ¢, our theory solver constructs the canonical model H,,
and checks whether it is consistent in time O(|p|*).

Proor. Let n be the size of the domain of ¢, and thus n € O(|¢|). Let Ay, A, ..., Ay, be the
sequence of (not necessarily disjoint) updates that get propagated until a fixed point is reached (we
ignore the concrete predicates that get updated). The time to perform these updates is in the worst
case 2,1*; O(JAi| - n) = O(n - X, |A;]), Theorem 4.1. Now we argue that the sum of all updates
> |A:| is bounded by O(n?) because (i) there are most n® many different predicate elements e
and (ii) every such element appears only O(1) many times over all updates. To see (ii), fix a single
element e and observe that every predicate will propagate e at most once (since it can only be added

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 129. Publication date: October 2022.

129:14 Thomas Haas, Roland Meyer, and Hernan Ponce de Ledn

once) to its dependent predicates. Since the number of predicates is constant (as the consistency
model is fixed), this gives O(1) many propagations of e in total. Hence, the total update time is
O(n- X" |Ai]) = O(n - n?) = O(n®) € O(|p]®). Checking consistency takes time at most O(n?)
(using Tarjan’s algorithm) and is therefore dominated by the update time. If ¢ describes a set of
dense base predicates, that is, when we have n € O(\/m), then we can even bound the update time

by O(lgl?). O

Step 4: Theory Explanation. If the structure H,, is inconsistent, the lazy SMT approach expects
the theory solver to return a theory explanation to the SAT solver. We elaborate on the shape of
this explanation before turning to its computation. A common source of inconsistency is that the
graph of a relation r contains a cycle that is forbidden by an axiom acyclic(r). We call such a cycle a
(consistency) violation. To make sure the cycle is not generated again, it may be tempting to return
the violation as the theory explanation. This, however, does not work. The shallow reason is that
literals over the derived predicates cannot be used in our theory. The deeper reason (and also the
reason for this restriction) is that the SAT solver does not understand how the derived predicates
are computed from the base predicates. Hence, even if we had a way to directly forbid the violation,
the SAT solver could again evaluate the base predicates in a way that leads to the (same) cycle. As
a result, the lazy SMT scheme would not make progress towards proving/disproving satisfiability.

To overcome the problem, we introduce the notion of reason for a violation. Intuitively, a reason
captures how the violation is derived from the base predicates. Technically, a reason is a set of
edges (in the case of sets, it is a set of elements) in the base predicates that is guaranteed to lead
to a violation (e.g., a cycle) in the derived predicate of interest. Since the SAT solver provides a
valuation of the base predicates, reasons are an appropriate way of preventing the violation from
being produced again, and thus make progress. In Section 5, we return to the topic and explain
how to generalize the set of predicates that the SAT solver understands and that can hence be used
for the theory explanation. We restrict the following discussion to the more interesting case of
binary predicates, i.e., relations and their relation graphs. We assume for now that there are no
unary predicates (sets), but the treatment of those is similar.

Derivation Length. The computation of a reason starts from the derived relation in the violated
axiom and proceeds down the dependency graph to the base relations. In the presence of fixed
points, one has to be careful to avoid infinite recursion due to cyclic derivations. Furthermore, it
is desirable to compute small reasons, because they describe more precisely the root cause of the
violation. This rules out more satisfying assignments for the SAT solver, and hence improves the
performance of the overall SMT engine.

Fortunately, we can achieve both, avoiding infinite recursion and finding small reasons, with the
same concept that we borrow from [Zhao et al. 2019]: we annotate the edges of each relation graph
with their derivation length. The derivation length is an upper bound on the number of derivation
steps needed to derive the edge. Given a relation r and an edge e € r, we define the derivation
length to be di(r, e) := 0, if r is a base relation, and otherwise

di(r, e) := min{max{dl(ry,e;),...,dl(rk,er)} + 1| e can be derived with ey, ..., ex fromry, ..., ri} .

We consider tuples of edges e; to ex that belong to relations r; to ry and that can be used to derive e.
The derivation length obtained with such a tuple is max{dI(ry, e1), ..., dl(rk, ex) } + 1. The derivation
length for e is now the minimum over all tuples that can be used to generate e.

The derivation length needs to be determined during the update-based computation of the
derived relations, and this computation is both frequent and time consuming. One can show that
the precise derivation length (which is defined via a minimum over a set) can be computed in
polynomial time: we expand the domain of the relations to also include the derivation length

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 129. Publication date: October 2022.

CAAT: Consistency as a Theory 129:15

ob;ob ob

Fig. 6. Example reason computation (right-to-left) under ARMv8.

(initially infinite), and order the same edge with different length as (e, l;) < (e, l;), provided I, < [,
meaning a smaller derivation length is better. However, we found this to be both expensive and
unnecessary in practice. Instead, we only consider the derivation length as an annotation that does
not have an influence on the partial order. When there is more than one way to derive an edge, e.g.,
when r3 = r; U ry, we directly choose the case which leads to a smaller derivation length.

An illustration of the derivation length computation is given in Figure 6. We will give a detailed
description of this figure in a moment.

Reasons. With the derivation length at hand, we can give the reason computation. The reason for
an edge e in a relation r is a conjunction of literals over base relations, denoted by reas(r, e), that is
constructed as follows:

reas(b,e) := b(e) if b is a base relation
reas(r \ b,e) = reas(r,e) A =b(e) if b is a base relation
reas(r,e) = reas(ry,e;) A ... A reas(rg, ex) if (*).

Constraint (*) says that e can be derived from the edges e; to e in the relations r; to rg, and for
all 1 < i < k we have dl(r;, e;) < dl(r, e). Strictly speaking, the last rule is non-deterministic, and
thus reas is a relation rather than a function. We elaborate in a moment on how we fix the choice
of e; to e. The definition of reasons is another testament to the importance of semi-positivity.
If the consistency model were not semi-positive, the second rule would have to consider r; \ r,
and compute all possible reasons of why r,(e) might be absent. We would then lose the ability to
express reasons as conjunctions. Even worse, these reasons might need to refer to elements outside
the current domain, as we have discussed in Section 3.

Figure 6 shows how to compute the reason of a single violating edge in ARMvS. To keep the
example simple, we only use a partially normalized model. The nodes of the relation graphs are v;
and vy, where v; is denoted by the upper dot. The edges between the nodes denote relationships
that hold. There are two consistency violations in the right-most graph, namely the two self-loops
ob(vy,v1) and ob(v,, v5) which both violate the axiom irreflexive(ob). We focus on the former and
highlight its edge red. The red edges of the other graphs explain this violation and, in particular,
coe(v1,0z) is (part of) a reason in terms of base predicates. The numbers labeling these red edges
show their associated derivation length. The other edges also have a derivation length, which
we ignore for this example. It is important to note that the self-loop (ob;ob)(v;,v1) cannot be
explained by the composition of ob(vy,v;) with itself, because the latter has a higher derivation
length, namely di(ob, (v1,01)) =5 > 4 = dl(ob; ob, (v1,v1)). This makes sure that we do not get
stuck in cyclic reasoning,.

A single edge may have several derivations, for example, when the relation is defined via union
or relational composition. When defining the reason, we focus on a single and short derivation.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 129. Publication date: October 2022.

129:16 Thomas Haas, Roland Meyer, and Hernan Ponce de Ledn

For unions, we proceed along the relation graph where the edge has the least derivation length.
For relational compositions, we choose any pair of edges that satisfies the condition. Finding the
smallest pair is expensive and the bound on the derivation length is sufficient to obtain small
reasons in practice. For transitive closures, we use a shortest path algorithm, making sure that only
edges with strictly smaller derivation length are used.

The theory explanation of interest is based on these reasons.

Theory Explanation. To return a theory explanation to the SAT solver, the theory solver selects a
set E of edges that cause a violation. For an acyclicity axiom, this set will form a cycle; for emptiness
and irreflexivity axioms, it will be a singleton edge. We elaborate in a moment on our selection
strategy if there are several sets of edges that can be chosen as E. The explanation for E in ris the
formula expl(r, E) := A cf reas(r, e). It is worth studying this formula more closely.

The theory explanation allows us to distinguish formulas ¢ that are unsatisfiable from formulas
that might become satisfied by repairing their canonical models. If expl(r, E) is a subformula of ¢,
then ¢ is unsatisfiable and the reason is an unsat core.

LEmMA 4.3. If expl(r, E) is not included in ¢ (i.e., it is not a subset), then expl(r, E) contains at least
one literal —~b(e) where b(e) occurs neither positively nor negatively in ¢.

Proor. To see the lemma, note that all rules in the reason computation except reas(r’ \ b, e)
propagate down the existence of edges to the base relations. The edges in the base relation stem
from atoms that were chosen from (evaluated to true as proposition in) the Boolean abstraction
of ¢. Hence, if the inclusion fails, we will have used the rule for reas(r’ \ b, e) at least once. If all
negative literals —b(e) were present in ¢, the inclusion would have held, so there must exist a
negative literal —b’(e’) that was obtained when computing reas(r’ \ b’, ¢’) for some predicate r’,
base predicate b’, and edge e’. We argue that the positive literal b’ (e”) is also not present, because if
it were, we would not have encountered edge e’ in r’ \ b’ and hence never evaluated reas(r’ \ b’, ¢’)
to begin with. O

Assume the inclusion fails and the SAT solver adds the negation of the explanation to the formula,
meaning the next formula to consider is ¢ A —expl(r, E). With the lemma at hand, the explanation
will have the shape

N\ bie) = \/bj(ey.
i J

Moreover, unless expl(r, E) C ¢, some of the b;(e;) do not occur in ¢. Any b;(e;) that does not
already occur in ¢ can be understood as a way to repair the inconsistency in the previous satisfying
assignment to the Boolean abstraction of ¢: enlarge the interpretation of b; in H,, to include e;. It
is tempting to implement this modification inside the theory solver. The problem is that the new
interpretation may lead to new consistency violations, which calls for backtracking. By adding the
formula to the outer SAT solver, we get backtracking for free. Conveniently, we do not need to
distinguish the case where ¢ is unsatisfiable from the case where inconsistencies can be repaired.
We just add the negation of the explanation to the formula and the SAT solver will automatically
perform the correct task.

When integrating our theory solver into a lazy SMT scheme, we obtain a decision procedure for
arbitrary Boolean formulas i/ formed over our theory. Due to semi-positivity, all reasons refer to the
domain induced by . Thus, repairing inconsistencies can only be done by changing interpretations
but not by changing the domain as we have shown in Theorem 3.4. This bounds the number of
models that need to be explored and thus guarantees termination.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 129. Publication date: October 2022.

CAAT: Consistency as a Theory 129:17

THEOREM 4.4. When integrating our theory solver into a lazy SMT scheme, we obtain a decision
procedure for satisfiabilty of arbitrary Boolean formulas y over Tqy,.

We argue that due to the offline integration a failure of expl(r,E) C ¢ is rare, meaning the
interaction between the SAT solver and the theory solver will terminate quickly. Behind this is the
assumption that ¢ refers to many theory literals. The reason is that in the offline approach the SAT
solver will produce a conjunction ¢ that assigns a truth value to all theory literals appearing in the
formula of interest . Therefore, if the inclusion failed to hold due to a literal =b(e), the formula
would need to not contain the atom b(e) at all, meaning it does not constrain the base relation b
over the edge e. In our application of the theory solver described in the following Section 6, we
always have assignments to all theory literals and no failure of the implication at all.

THEOREM 4.5. Let be a Boolean formula over 7o, If ¢ is an unsatisfiable conjunction of theory
literals from y that fully defines all base predicates over the domain %, then expl(r,E) C ¢ holds.

Proor. Since ¢ fully defines all base predicates over 3, it must contain either literal b(e) or
literal —b(e) for each base predicate b and edge (or element) e over domain %, So by contraposition
of Lemma 4.3, the theorem holds.]

Choosing Violations. A single structure H, may contain several consistency violations, from the
same or from different axioms. While computing an explanation for a single violation guarantees
progress for the overall SMT-engine, this causes many calls to the theory solver. On the other
extreme, we could compute all reasons for all violations of all axioms. This yields the strongest
explanation possible, but it can take exponential time and hence is infeasible. A practical approach
has to balance between explanation strength and computation efficiency.

As mentioned above, we compute small reasons per violation. For emptiness and irreflexivity
axioms, we simply collect all violations as their size is polynomially bounded. For acyclicity, a
heuristic to obtain small reasons is to choose short cycles. However, the set of shortest cycles in a
graph may still be exponential in the size of the graph, and we cannot efficiently explore them all.
Furthermore, a long cycle may provide a valuable explanation if it is highly independent of the
shorter cycles.

In our solver, we use the following heuristic to choose violations for an acyclicity axiom. We
compute a vertex cycle cover [West 2000] for each strongly connected component (SCC) in the
relation graph. A vertex cycle cover of a graph is a set of cycles such that every node is contained
in at least one cycle. Obviously, a node can only ever be covered by a cycle if it is part of some SCC.
Since we use Tarjan’s algorithm when performing the acyclicity check, we already know all SCCs
when computing the theory explanation. For each SCC, we mark all of its nodes as unvisited and
iteratively compute a vertex cycle cover as follows: (i) choose an unvisited node v, (ii) compute a
shortest path from v to itself (i.e., a shortest cycle), (iii) mark all nodes of the cycle as visited, and
(iv) repeat until all nodes are visited.

The above algorithm to find violations is polynomial in time. Despite this, the explanation
computation may still be exponential because the recursion in the definition of reas may descend
polynomially many times resulting in a computation tree of polynomial height and potentially
exponential size overall. While we did not encounter this case in practice, one may wonder if we
can do better in the worst case. The answer is yes. To see this, first observe that if the domain has
size n, there are at most O(n?) many edges in total (we assume cm to be fixed and not part of the
input for the complexity analysis). Hence, any exponentially-sized computation tree has to visit the
same edges multiple times. If we employ memoization, we can avoid all duplications in this tree
and truncate it down to size O(n?). Next, observe that the explanation of an edge can be of size at
most O(n?) if it refers to all possible literals over base predicates. This means we can compute the

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 129. Publication date: October 2022.

129:18 Thomas Haas, Roland Meyer, and Hernan Ponce de Ledn

explanation of any node in the computation tree in time O(n?) given that the nodes below it are
already computed. Overall, this gives a worst-case time of O(n?*) to compute the explanation of a
violation.

THEOREM 4.6. IfH,, is inconsistent, one can compute theory explanations in time O(|¢|*).

5 CUTTING

Our theory solver hinges on the assumption of semi-positivity: after normalization all difference
constraints r \ b in the consistency model have to subtract a base relation b. In the context of
memory models (cf. Section 7), important representatives are semi-positive, including hardware
memory models like TSO, ARMv8, and POWER, as well as language memory models like LKMM,
RC11, and IMM. The memory models of RISC-V and C11, however, are not semi-positive. The full
C11 model is known to be complex and problematic [Batty et al. 2015, 2011; Lahav et al. 2017],
and the popular approximations IMM [Podkopaev et al. 2019] and RC11 [Lahav et al. 2017] are
semi-positive. Not being able to support RISC-V is a limitation that we address here.

First, it is worth noting that rewriting steps may be able to make a non-semi-positive consistency
model semi-positive. We can use De Morgan’s laws to push differences in derived predicates down
to the base predicates, if possible. Here we use the identities (i) c \ (aUb) = (c\ a) \ b, (ii)
c\(anb)=(c\a)U(c\b),and (iii)) c\ (a\ b) = (c\ a) U (c N b). In general, this rewriting may
fail to restore semi-positivity, and in particular it fails for C11 and RISC-V because the difference
operator is not compatible with relational composition. We need a more general approach.

We introduce cutting as a method that makes consistency models semi-positive. Cutting turns
derived predicates into base predicates by removing (cutting) their defining equations from the
consistency model. This comes at the price of having to eagerly encode the removed equations.

To make the idea of cutting precise, consider the consistency model ¢m and remember that
the stratum p, contains the base predicates. We show how to turn the predicates in stratum p,
into base predicates. For simplicity, assume p, only consists of the relation d that is defined by
the equation let d = by;b,. The trick is to determine a formula @, capturing (in the expected
way) this defining equation. To construct the formula, we can use all techniques that have been
developed in earlier works [Ponce de Leon et al. 2017; Wickerson et al. 2017]. In particular, ®, may
refer to additional theories 77 to 7,. The defining equation is then removed from the consistency
model cm, leading to cm’. As for the satisfiability of a given formula, the relationship between the
consistency models is this.

THEOREM 5.1. Tpata + Tem E V if and only if Tpara + Towr + i+ ...+ T EY A Dy .

With cutting, semi-positivity is no longer a limitation: one can always lift the problematic
predicates to base predicates.

COROLLARY 5.2. Every consistency model can be made semi-positive.

We illustrate this on the example of RISC-V. The model contains the following defining equations:
let r2 = ([R];po-loc-no-w; [R]) \ rsw and let rsw = rf~!;rf. We eagerly encode the second
equation into a formula &, and remove it from the consistency model, resulting in RISC-V’.
Since rsw no longer has a defining equation, it is a base predicate and RISC-V” is a semi-positive
model. The practicality of cutting heavily depends on the complexity of the derived relations
used underneath a difference operator. In the case of C11, for example, the problematic difference
operator involves deeply nested derivations, and removing them would mean eagerly encoding
half of the consistency model.

Although cutting increases the size of the formula, it may bring advantages for the reasoning
engine. Consider the hypothetical model ¢m’ from above and assume our theory solver computes a

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 129. Publication date: October 2022.

CAAT: Consistency as a Theory 129:19

reason containing the literal d (v, v2). This literal represents all possible derivations of d(vy,v2),
that is, the combination of by (v1,v) and b, (v, v;) for all v. Hence, a reason containing d(v;,v;) is
more powerful in reducing the search space than a reason that splits it into a concrete combination,
e.g., by (v1,03) A ba(vs,v2).

Whether cutting a consistency model is beneficial depends on the use-case. We now propose a
static approximation to determine when and where to cut. Consider again the dependency graph
among the relations in the consistency model. Understand the base predicates as source nodes and
the derived predicates that are used in axioms as sinks. Any vertex cut [West 2000] that separates
the sources from the sinks (it may contain nodes from both of them) can be used for cutting the
consistency model. Let S be such a vertex cut. Then any violation can be reduced to a reason over
atoms r(x, y) with r € S. Now, we can partially encode the consistency model up to cut S and let
our theory solver only generate reasons w.r.t. S.

If most time is spent in the theory solver, cutting can be used to balance the workload and put
more effort onto the SMT-engine. This needs a measure for the quality of a vertex cut. Vertex cuts
are preferable that involve fewer nodes, as in the example of the relation d assuming b, and b,
are not used elsewhere. More involved measures are possible, like giving a weight to the relations
depending on their expected size. We found that setting S to the base relations and moving most
reasoning to our theory solver gave the most consistent performance. However, we see room for
improvement by optimizing eager encodings with the help of static analyses [Gavrilenko et al.
2019; Nielson et al. 1999].

Another limitation of our theory is that formulas can only talk about base predicates and not
about derived predicates. Being able to talk about derived predicates could be useful to formulate
constraints that are outside our language like, e.g., functionality or totality constraints. Cutting can
also address this limitation by making the derived predicate base and hence directly addressable in
the formula. This adds flexibility to our approach.

6 BMC WITH MEMORY MODELS AS INPUTS

We use our new theory solver to tackle the problem stated in Section 1: verifying a given program
relative to a given memory model. We haven’t explicitly mentioned the syntax of the programs.
Since we deal with a variety of hardware and language memory models, the reader might wonder
"can you have one instruction set to rule them all?". The answer is yes. The C-code is compiled via
LLVM-intermediary to Boogie [Leino 2008] which is then converted to a LISA-like [Alglave and
Cousot 2016] internal representation (IR). The reason the IR is so powerful is that instructions can
bear tags which can be used to model, e.g., C11 release and acquire annotations, or scopes like in
NVIDIA PTX [Alglave et al. 2015]. Concretely, tags are simply base unary predicates in Figure 2.

While there exist theories for concrete models like SC, TSO and PSO (cf. Section 8), this is the
first time a lazy SMT encoding is achieved for arbitrary models in the context of memory model-
aware verification. This brings several advantages over other approaches. As we will demonstrate
(cf. Section 7), the performance of the lazy approach is better than for DARTAGNAN, and despite its
flexibility, in many cases it outperforms stateless model checking techniques. Compared to a tricky
eager SMT encoding or an intricate stateless model checking algorithm, the lazy SMT encoding is
simpler, and hence easier to implement and to maintain. This simplicity is bought at the price of
having to develop the theory solver. This solver, however, achieves the right separation of concerns:
it is a stand-alone artifact that interacts through a clearly defined and stable interface with the rest
of the SMT machinery.

Consider a program P annotated by assertions and unrolled in preparation to the bounded
model checking. Remember from Section 1 that the correctness of under a memory model M
is formulated as [Pg]] N [M] = 0. The eager SMT encoding used in DARTAGNAN would devise

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 129. Publication date: October 2022.

129:20 Thomas Haas, Roland Meyer, and Hernan Ponce de Ledn

1 atomic_bool f, g, x; 15 atomic_int t;

2 16

3 void thread_f() { 17 void thread g () {

4 store(&f, 1, REL); 18 store (&g, 1, REL);

5 store(&t, 2, REL); 19 store(&t, 1, REL);

6 if (load (&g, ACQ) != 1 || 20 if (load(&f, ACQ) != 1 ||

7 load(st, ACQ) != 2) { 21 load (&t, ACQ) !'= 1) {

8 /* critical section begins =/ 22 /* critical section begins */
9 store(&x, 1, REL); 23 store (&x, 2, REL);

10 assert (load (&x, ACQ) == 1); 24 assert (load (&x, ACQ) == 2);
11 /% critical section ends x/ 25 /% critical section ends x/
12 store (&f, 0, REL); 26 store (&g, 0, REL);

Fig. 7. Peterson’s mutual exclusion algorithm.

a formula ® »(over Tsat1 + T1p, that captures memory model-specific information and check the
(un)satisfiability

Tbata + Tsar + TioL | Pp A e A D pq.

With our new theory solver, we can skip the formula ® 5. Instead, the memory model is understood
as a consistency model (there is not even a translation, the memory model matches our format)
and turned into a theory 7. We thus check®

TData + Tm |= Dp A (I),-‘,

By adding the new theory solver, the SMT engine understands the influence of the base relations
used in the program encoding on the derived relations defined in the memory model. It is worth
noting that the encoding of the program and its specification is the same for the eager and the lazy
encoding, so our implementation relies on the DARTAGNAN infrastructure, which is open source.

We use Peterson’s mutual exclusion algorithm from Figure 7 to illustrate how the lazy SMT
scheme checks the Tpgq + Tp(-satisfiability of ®p A Q. Peterson’s algorithm uses the shared
variables f, g, t, and x. The first two are Boolean flags indicating whether the threads want to
enter their critical sections. In case both threads want to enter simultaneously, the variable t is
used to decide who may enter first. The last variable x represents the shared data that must be
accessed exclusively. To check mutual exclusion, after writing the data to x, the thread reads the
value of x and makes sure the value has not been modified before leaving the critical section.

For Peterson’s algorithm to work as expected, it is crucial that each thread observes when the
other one wants to enter its critical section. Under C11, Peterson fails when using the ACQ/REL
memory tags in Figure 7. The release-acquire (RA) semantics guarantees that an acquire-load
cannot be reordered with instructions following in program order. Similarly, a release-store cannot
be reordered with instructions preceding it in program order. However, RA does not prohibit
reordering the store from line 4 (resp. 18) with the load from line 6 (resp. 20). As explained above,
those two orders are fundamental for the correctness of Peterson’s algorithm. Despite being unsafe
for C11, we will show that the program is safe under the ARMv8 model from Figure 3.° This is
because hardware memory models tend to be stricter (admit fewer behaviors) than the memory
models of high-level languages like C11.

Figure 8 illustrates the first and the last two calls to our theory solver in the lazy SMT scheme.
For each call, we show the program behavior violating some assertion (left) and how this behavior
is inconsistent (right) according to ARMv8. For easy understanding, we show ob-cycles whose

5To be precise, we still require 7547 to encode the control flow of the program and 7pp; to encode totality of certain relations.
However, the formulas over those theories in the lazy encoding are much smaller than ® 5 in the eager encoding.

The program from Figure 7 needs to be transformed to ARMv8’s low-level assembly. This is done via compiler mappings
(https://www.cl.cam.ac.uk/~pes20/cpp/cppOxmappings.html). Since ARMv8 has explicit support for ACQ/REL memory
accesses, for this example the transformation is just the identity.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 129. Publication date: October 2022.

https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

CAAT: Consistency as a Theory 129:21
/ 1st Call \ / 2nd Call \
Li(g)
Lie) L() »
Wit 1) Wis(g 1) Wi(f, 1) Wis(g, 1)
Wa(f, 1) Wis(g, 1) Wit 1) Wis(g, 1) 4 4
1 1 1 Ws(t,2) ———— Wis(t, 1) Wit 2) Wis(t, 1)
Wi(t,2) ——— Wi(t, 1) Wi(t, 2) Wig(t, 1) 1 4
4 L 1 Rq(g) Raof) R(g) Rao(f)
Re(g) Rao(f) Re(g) Rao(f) 1 1
n n Wolx, 1) Rou(t) Wo(x, 1) Roa(t)
Wolx, 1) ¢——— Was(x,2) Wi(x, 1) Was(x, 2) + +
0 4 [o Rio() Waslx, 2) e Rio(x) Was(x, 2)
P) Ru() i # Ru(Ru(9) 1 T)
Ros(x) Rog(x) 3
5th Call 6th Call
/ L@ \ /
. Wit 1) Wis(g, 1) Wit 1) Wis(g, 1)
Wit 1) Wis(g, 1) Wi(f, 1) Wis(g, 1) i L
1 1 Wi(t,2) < Wiglt, 1) Wilt, 2) Wis(t, 1)
Ws(t,2) ——— Wis(t, 1) Wit,2) Wis(t, 1) 4 i
1 N Re(g) Rao(F) Ry(g) Rao(f)
Rq(g) Ruof) Ri(®) Raof) 4 4 4
+ + Wi(x, 1) Rai(t) Wi, 1) Raa(t)
Ro(t) Was(x, 2) Ry (t) Was(x, 2) L 1
Loy + % Ru() Was(x, 2) & Ri(o) Was(x, 2)
Wolx, 1) Ros(x) e Wo(x, 1) Ry(x) 4
4 Ryy(%) Ras(x)
Rio(x) Rio(x) L
b Was(g, 0) Wa(g, 0)
Wi(f, 0)

\ Wi, 0)

/

-

Fig. 8. Analyzing Peterson’s algorithm under ARMv8. The left-hand graph in each call shows the program
execution with green edges standing for the rf-relation, red edges for the co-relation, and black edges for
the po-relation. The full and colored edges in the left-hand graph are those that participate in some of the
consistency violations shown in the right-hand graph.

transitive closures cause the self-loops that violate the constraint irreflexive(ob). This better
illustrates the cyclic dependencies that lead to inconsistencies. Under weak memory models, the
program behavior is represented by graphs where nodes model instructions and edges model
dependencies. Each node is either a store (W), load (L), or an initialization (I). We use subscripts to
match nodes with the corresponding lines of code in Figure 7.

The first violating behavior is a solution to ®p A ®g in which the load in each critical section
gets its value from (represented by the green edges) the store of the other thread, thus clearly
violating mutual exclusion. This execution exhibits three different inconsistencies with ARMv8
illustrated by the three cycles to the right. We cannot tell the SAT solver to forbid those cycles
by adding, e.g., the constraint —ob(Wj,, W,). The point is that ob is a derived predicate (defined
in Figure 3), and the SAT solver does not understand the interplay between the base predicates
and the derived ones. To transform the inconsistency information into something the SAT solver
can reason about, our theory solver determines the reason for the induced self-loop ob(W,, Wy) (as
well as the reasons for the other violations). The reason is the conjunction of base predicate literals

rfe(ly, Rg) A coe(ly, Wig) A L(Wig) A po(Wig, Rog) A A(Rao) A
rfe(If, Rgo) A COE(If, W4) A L(W4) A pO(W4,R6) A A(R6) .

In general, our theory solver determines not only one but several reasons for inconsistency and
reports them in the form of a theory explanation to the SAT solver. The solver adds the negation of
the theory explanation to the formula and repeats the process. In this example, after six iterations,
the solver finds that ®p A ®g A —expl' A ... A —expl® is unsatisfiable and thus the program safe.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 129. Publication date: October 2022.

129:22 Thomas Haas, Roland Meyer, and Hernan Ponce de Ledn

Table 1. Tools used in the evaluation and their memory model support. ¢: fully supported by the theory and
implemented, X: not supported by the theory or not implemented, !"": supported by the theory, but not (or
only partially) implemented.

Format Memory Consistency
Tool litmus [C || Parametric [SC [TSO | Powkr | ARMv8 [RISC-V [IMM | RC11 | LKMM
HERD v X v V]V % v v ! v v
DARTAGNAN v v v vV | Vv v v v v v v
NIDHUGG X v X v]v % X X X X X
GENMC X v ! AE ! ! ! v | v v
Caat v v v v]iv v v v v v v

7 EVALUATION

We implemented the approach described in Section 6 as an extension of DARTAGNAN, a BMC tool
which takes memory models as inputs. In the remainder of this section, we use “DARTAGNAN” to
refer to the default version and “CAAT” to refer to our extension. Both DARTAGNAN and CAAT are
open source and available at https://github.com/hernanponcedeleon/Dat3M.

We compare CAAT to several state—of-the-art tools for program verification under memory mod-
els. Table 1 summarizes the tools we selected for the evaluation. Section 8 discusses their underlying
techniques and limitations. HERD [Alglave et al. 2014] is parametric since it takes the memory
model as an input. Since it exhaustively generates all violating executions and only then filters
the non-consistent ones, it can only verify small programs (i.e., litmus tests). DARTAGNAN [Ponce
de Ledn et al. 2020] also takes memory models as inputs, but it implements the BMC approach
from Figure 1 using the formula ®p A &g A ® . This improves scalability w.r.t. the exhaustive
approach of HERD, thus it can verify not only litmus tests, but also more complex programs written
in C. NIDHUGG [Abdulla et al. 2014] and GENMC [Kokologiannakis and Vafeiadis 2021] perform
stateless model checking (SMC) of C programs. NIDHUGG supports SC, TSO and POWER (also a
simplified version of ARMvV7), but not any of the other models. GENMC builds on top of axiomatic
semantics and supports SC, IMM [Podkopaev et al. 2019], RC11 [Lahav et al. 2017] and (a simplified
version of) LKMM, but not TSO, POWER, or ARMvV3.

The remainder of this section provides answers to the following research questions:

(RQ1) Can Caar handle (a large subset of) most well known memory models?
(RQ2) How does the performance of CAAT compare against tools supporting memory models?
(RQ3) What is the impact in the performance of CAAT when using cutting?

Experimental Setup. The evaluation was done on a MacBook Pro with an Intel Core i7 CPU
(4 cores @2.8 GHz) and 16 GB of RAM. We used the following versions of the tools: HERD 7.56,
DARTAGNAN 3.1.0, NIDHUGG 0.2, GENMC v0.8.

To answer (RQ1) we run CAAT on a large set of litmus tests using five memory models covering
a large subset of the language in Figure 2 (including fixed points and predicate differences). The set
contains established benchmarks that have been collected during a community effort to formalize
and validate memory consistency models [Alglave et al. 2018, 2014; Pulte et al. 2018; Sarkar
et al. 2011]. Tests are distributed as follows: 487 for TSO, 2362 for POWER, 5141 for ARMvS,
6661 for RISC-V, and 5013 for LKMM. Note that the consistency models of ARMv8 and LKMM
are still under constant development. For our evaluation we used the versions from [Pulte et al.
2018] and [Alglave et al. 2018]. We run the same tests with HERD and DARTAGNAN which also
support all five memory models. The results of all three tools match, showing that CAAT is precise,
its implementation correct, and that it can handle the intrinsics of complex memory models.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 129. Publication date: October 2022.

https://github.com/hernanponcedeleon/Dat3M

CAAT: Consistency as a Theory 129:23

Litmus Tests

On the right we show the accumulated solving w’ - oortagnan mm terd
times of each tool grouped by the consistency 1061

model. Even on these small examples, CAAT per-
forms better than the other tools.

To answer (RQ2), we run CAAT, DARTAGNAN,
GENMC and NIDHUGG on twelve realistic bench-
marks containing different lock implementations
and lock-free data structures using C11 atomics.
These benchmarks have been previously used

Time (ms)

to evaluate the performance of tools supporting 100]
both C programs and memory models [Kokolo- e Gun ey Go)
giannakis et al. 2019a,b; Kokologiannakis and Fig. 9. Performance on litmus tests.

Vafeiadis 2021; Oberhauser et al. 2021]. The suffix

in the name of each benchmark specifies the number of threads. All loops were unrolled once,
so we end up with two copies of each loop body. We use the following consistency models: TSO,
PoweRr, ARMvS, RISC-V, IMM, and RC11.

Since RISC-V is not semi-positive, running CAAT on this model already forces us to use cutting. To
answer (RQ3), however, we want to compare the performance of CAAT when run on two equivalent
models, one using cutting and one not. We thus force the CaAT solver to cut each of the models
(except RISC-V where cutting is actually required) by eagerly encoding relation let fr = rf™*;co
which is commonly used by all memory models.

The results of the verification are given in Figure 10. DARTAGNAN (and thus CAAT) uses the
JavaSMT library [Baier et al. 2021; Karpenkov et al. 2016] to support different SMT solvers. For this
set of benchmarks we report the results obtained by using Z3 [De Moura and Bjerner 2008] which
yields the best overall performance. The last set of bars of each figure represents the arithmetic
mean X of each tool. NIDHUGG supports neither ARMv8 nor CAS instructions with acquire/release
tags (which all benchmarks use) under POWER, thus we omit it in the evaluation of those memory
models. GENMC supports IMM and RC11, but none of the hardware models, thus we also omit it in
the evaluation of hardware models.

From a verification perspective, the models of TSO, ARMv8 and RISC-V can be considered “simple”
since they do not contain fixed points (e.g., transitive closures). Because of this, the improvement
of CaAT w.r.t. the eager encoding of DARTAGNAN is only marginal. Since cutting encodes more
than the lazy approach, but less than the eager one, its performance sits in between those two
approaches. Compared to NIDHUGG, CAAT is 5x faster on average.

In the presence of transitive closures (IMM and RC11), CAAT is 5x faster than DARTAGNAN on
average, and never slower. For some benchmarks, it can be at least one order of magnitude faster
(e.g., dglm, ms, and t reiber). Despite CAAT being more general than GENMC, the performance of
both tools is similar on average. While in cases like mut ex and mutex-mus1 CAAT is at least one
order of magnitude faster, the opposite can also be true. In particular, in benchmarks with a small
search space like 1inuxrwlock (only 24 executions according to GENMC) or using bit-precise
reasoning like harris, GENMC performs better than CaaT.

When going from transitive closures to the more complex fixed points found in POWER, the
advantage of CAAT becomes even more apparent. For this model, CAAT is on average one order of
magnitude faster than DARTAGNAN, and never slower. In some cases it can be at least two orders
faster (e.g., mutex and lev). Interestingly, while cutting is not required for models like TSO,
Power and ARMvVS, in some cases it actually reduces the verification times, see e.g., ticketlock
on TSO, spinlock on POWER, or treiber on ARMvS.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 129. Publication date: October 2022.

129:24 Thomas Haas, Roland Meyer, and Hernan Ponce de Ledn

TSO Power

BN CAAT W Cutting =% Dartagnan mm nNidhugg

ARMv8 RISC-V

Time (ms)
[

5 g

2 %

"
£

o
2

P
o (3_52 d_P‘ ‘:‘:‘7 > ;}’k &’5 = &G e},‘b *
o & & & S h: & &
LI ETE T TP
F @R &
@ e F N & 4
ey o8 &

MM

Fig. 10. Performance of tools supporting different memory models.

Bias. In Section 5 we talked about the possibility to eagerly encode parts of the consistency model
by cutting derived predicates and turning them into base predicates. This shifts workload from our
procedure onto the rest of the SMT-engine. A related, but slightly different approach, is to eagerly
encode a model cm, 4 that is weaker than the intended model c¢m but simple enough to admit
small encodings. By being weaker, we mean that any consistent model of crm,,eqx is also consistent
for cm (we assume both models to be over the same set of base predicates). We looked into memory
consistency models and identified a few simple constraints most memory models satisfy. These are:
(RMW) empty (rmw N fre; coe) which enforces atomicity, (UNIPROC) acyclic(po-loc U rf U co U fr)
modeling SC per location, and (OoTa) acyclic(dep U rf) forbidding out-of-thin-air values. When
eagerly encoding these constraints we call them bias constraints. The first two constraints are
found in all memory consistency models, which makes them universally usable as biases. The

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 129. Publication date: October 2022.

CAAT: Consistency as a Theory 129:25

Table 2. Performance (given in ms) of CAAT using different biases to verify QspiNLock [Paolillo et al. 2022].

LKMM ARMvS PowEeR RISC-V
Rmw Oota Unt TiMmE Rmw Oota Unt TiME Rmw Oota UnNt TIME RmMw Oota Unt TIME
b 4 X X 7029 X X X 5520 v X v 7813 v X X 5789
4 (4 v 7137 b ¢ (4 b ¢ 5587 X X v 7905 X v X 6051
4 X 4 7363 4 v v 5824 v v 4 7929 v X v 6364
X X v 7417 4 X } 4 5999 X v v 8184 X X v 6442
v X } 4 7547 v v X 6081 v v ¢ 8382 X X X 6480
X v v 8144 v X 4 6193 X v X 8410 (4 v v 6703
v v b ¢ 10289 b ¢ X v 6200 X X X 8752 X v v 6777
X v X 10785 b 4 v v 6270 v X X 12562 v v X 7374
- - - 57372 - - - 6387 - - - 455265 - - - 8538

Oorta bias, however, is not valid in all memory models. While hardware memory models generally
satisfy OoTa, language level memory models may not. This is because language level models try
to take compiler optimizations which break dependencies into account, so that not all syntactic
dependencies are preserved. In some cases, this even leads to these models straight-up allowing for
out-of-thin-air behavior as is witnessed by the C11 memory model [Batty et al. 2015]. This fact
makes the OoTA bias actually more interesting from a practical point of view; by strengthening the
memory model, it removes even some consistent executions from the search space, reducing it in a
way orthogonal to the other biases. In the context of BMC, which already under-approximates the
program behavior to begin with, adding this bias just adds another layer to the incompleteness of
BMC with the prospect of improving verification times. That being said, in all our test cases (in
particular the 5013 LKMM litmus tests), we did not encounter a single case where adding Oota hid
any bugs.

Using bias constraints, we observed mixed results in performance. For the benchmarks in Fig-
ure 10, we got the best overall results when not encoding any bias constraints at all. Table 2
compares the performance of CAAT to verify QspINLOCK (the main spinlock in Linux) using all
different bias combinations. It also reports the verification times of DARTAGNAN (rows having
entries "-"). Verifying QSPINLOCK requires bitwise reasoning and we obtained the best results by
using the Yices2 SMT solver [Dutertre 2014]. As in Figure 10, CAAT clearly outperforms DARTAG-
NAN. In models using fixed points like LKMM and POwER, CAAT is between 8x and 65X faster.
While for LKMM and ARMv8 using no bias is the best option (this is aligned with our observation
from Figure 10), this is one of the worst combinations for POWER (only using Rmw alone is worse).
For RISC-V, four out of the eight possible combinations work better than not using any bias.

The impact of bias constraints is, however, more drastic in the verification of the Compact
NUMA-aware (CNA) lock [Dice and Kogan 2019]. The verification of the CNA lock [Paolillo et al.
2022] is of special interest because it has been proposed as a new slowpath for QspinLock. Using
the Oota bias alone, we were able to prove that QspiNLock with CNA in its slowpath is correct
(up to the unwinding bound) in less than 30 minutes for each of the consistency models in Table 2.
Using no bias, however, the verification did not produce any result after 48 hours. It is also worth
to emphasize the unique advantage of an offline-integrated theory solver over an online-integrated
one: the former can be combined with any SMT backend out-of-the-box. The same verification run
that took Yices2 only 30 minutes, took Z3 almost 10 hours.

8 RELATED WORK

Understanding memory models is a problem that has seen considerable interest in the last decade [Al-
glave et al. 2013, 2014; Atig et al. 2010; Bouajjani et al. 2013; Burckhardt and Musuvathi 2008; Dan
et al. 2013, 2015; Turon et al. 2014; Vafeiadis and Narayan 2013]. A considerable achievement in

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 129. Publication date: October 2022.

129:26 Thomas Haas, Roland Meyer, and Hernan Ponce de Ledn

this line of research is the CAT language [Alglave 2010; Alglave et al. 2016, 2014] in which most
memory models of interest can be expressed. CAT is made for rapid prototyping. New models
are easy to write so that the developer is able to quickly, yet precisely, assess the behavior of the
program under the corresponding semantics. Our consistency language supports arbitrary base
predicates while CAT has a set of predefined ones tailored for memory consistency. On the other
hand, CAT has powerful primitives, e.g., to compute all possible linearisations of an acyclic relation.

We are not the first to develop theories for memory consistency. An ordering consistency theory
can be used to verify concurrent programs [He et al. 2021]. While sharing similarities with 7¢p,
the ordering consistency theory is specialized to SC. The approach has recently been extended
to support TSO and PSO [Fan et al. 2022]. However, those models are still very similar to SC and
do not deal with the complexities of fixed points and predicate differences. For most memory
models, program executions can be simulated using a SAT solver. However, this is not the case
for some emerging memory models like the one proposed by Jeffrey-Riely (J+R) [Jeffrey and Riely
2016] which relates to the Java memory model [Manson et al. 2006]. This model makes use of
three levels of quantifiers. PRIDEMM, a model checker built on top of a QBF solver, was used to
simulate executions under the J+R memory model [Cooksey et al. 2019]. Unfortunately, it suffers
from performance issues even for small litmus tests.

Our consistency language has similarities with Alloy [Jackson 2003, 2019]. Alloy is based on
relational logic, a simple but powerful combination of first-order logic, relational algebra, and
transitive closure. It has been applied in the context of memory models for verification [Torlak et al.
2010], synthesis [Bornholt and Torlak 2017] and comparing different models [Wickerson et al. 2017].
These approaches use an eager encoding, i.e., relations are translated (using clever encodings) to
SAT [Torlak and Jackson 2007]. This is possible because relational logic does not support recursive
definitions. Despite handling transitive closures, this is not enough. Transitive closures can only
express fixed points over linear functions (w.r.t. relational composition ";"). Models like LKMM,
ARMvV7, and POowER need fixed points over non-linear functions. The difference between the
theories was actually stated in [Bornholt and Torlak 2017]: “MemSynth’s relational DSL is similar to
the CAT language ... But CAT includes fixpoint operations, while our DSL does not . The fact that we
can efficiently handle fixed points is the main difference between our work and relational logic.

Instead of encoding the whole program as a single formula, SATCheck [Demsky and Lam 2015]
uses concolic testing to efficiently explore parts of the program, and a SAT solver to find new
behaviors (new branches, interleavings, input/output library call behaviors). Although it was
implemented to support SC and TSO, its techniques should be applicable to more relaxed memory
models. We believe their encoding could be solved by the SMT scheme from Section 4.

NipHUGG [Abdulla et al. 2014] is a stateless model checker supporting TSO and PowEr [Abdulla
et al. 2015, 2016], but the algorithm is not parametric in the memory model. GENMC [Kokologian-
nakis and Vafeiadis 2021] is also a stateless model checker, but built on top of axiomatic semantics.
While its main procedure is parametric in the choice of the memory model (subject to a few minimal
constraints), the tool currently does not support memory models as input. As stated by its authors,
adding precise support to GENMC for other memory models is not trivial [Kokologiannakis and
Vafeiadis 2021]: “LKMM uses complex constraints for checking consistency. ..., we designed approxi-
mations for them” and “We plan to implement a DSL for memory models, so as to make it easier to
extend GENMC with new models”.

Cerberus-BMC [Lau et al. 2019] provides reference semantics which simultaneously supports a
choice in the concurrency memory model (C11, RC11, LKMM), a memory model object, and well-
validated thread-local semantics. However, as stated by the authors, “it is intended as an executable
reference semantics for small test programs, not itself as a verification tool that can be applied to larger
bodies of C”. In fact, the authors mention the recursive definitions involved in LKMM as one of the

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 129. Publication date: October 2022.

CAAT: Consistency as a Theory 129:27

main performance bottlenecks. This supports our claim that we need verification technology that
can efficiently handle fixed points. DARTAGNAN [Ponce de Ledn et al. 2018, 2020] was a first step in
this direction. However, it achieves poor performance for models like PowER or LKMM due to its
eager encoding. Contrary to this, CAAT efficiently handles recursive definitions.

While "user-mode" concurrency has received considerable attention in the last two decades, only
recently system semantics emerged. The semantics of instruction fetch and cache maintenance (for
ARMVS) were clarified in [Simner et al. 2022], while relaxed virtual memory is explored in [Simner
et al. 2020]. There is even an integration of full-scale instruction-set architecture (ISA) semantics
with axiomatic concurrency models [Armstrong et al. 2021]. While all such extensions to the
semantics come with tool support (e.g., RMEM or IsLa), those tools achieve poor performance. Their
performance evaluation reports that HERD (which is already slower than CAAT) is faster for nearly
all tests. However, this is not surprising given the amount of detail in the full-scale instruction
semantics. A limitation of IsLA is that it cannot handle recursive models. However, the authors
stated that they believe that “relations such as POWER’s (mutually recursive) preserved program order
are nevertheless representable as SMT, so this limitation is mostly in our translation from CAT”. We
believe IsLA could benefit from the verification technology proposed by this paper.

9 FUTURE WORK

We plan to extend our work in the following ways. To handle non-semi-positive consistency models,
we currently cut derived predicates that appear negatively (as a right-hand side of a difference) from
the consistency model in their entirety. We do so because our theory solver cannot compute reasons
(in terms of base predicates) for the absence of an edge/element of a derived predicate. However, in
practice, it is likely that only a fraction of a predicate is actually relevant for consistency, and hence
we could cut only those parts of the predicate that actually appear in theory explanations. We thus
plan to encode the problematic predicate incrementally on-demand. This on-demand cutting would
lead to a hybrid between the eager and the lazy SMT encoding.

Interesting is also an online integration of our theory solver into an SMT engine. While the
offline-integration is more flexible in terms of supported backends and shows promising results,
we have observed a limitation in the context of BMC. In the offline approach, the consistency
reasoning will only be done last, after a full satisfying assignment has been determined. This may
be detrimental to performance if the consistency reasoning is the easy bit and finding the satisfying
assignment involves invocations to theory solvers that are integrated in an online fashion. For
example, if programs have complex data and control flow and hence complex arithmetic constraints,
it might be best to defer exactly that arithmetic reasoning until after the consistency reasoning.

An online integration calls for incremental theory solving. In the presence of non-monotonic
differences, it is not clear how to achieve this. Even when restricting recursion to the simpler case
of transitive closures (for which there are dynamic algorithms [Roditty 2008]), we do not know if
these algorithms can be made to track derivations lengths. A way out may be to circumvent the
non-monotonic reasoning altogether and construct a fully positive model via (on-demand) cutting.

10 DATA AVAILABILITY STATEMENT

The complete benchmark sets of Figure 9 and Figure 10 as well as the code used to generate the
figures are provided in the accompanying artifact [Haas et al. 2022].

REFERENCES

Parosh A. Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl Leonardsson, and Konstantinos F. Sagonas.
2015. Stateless Model Checking for TSO and PSO. In TACAS (LNCS, Vol. 9035). Springer, 353-367. https://doi.org/10.
1007/978-3-662-46681-0_28

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 129. Publication date: October 2022.

https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-46681-0_28

129:28 Thomas Haas, Roland Meyer, and Hernan Ponce de Ledn

Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. 2014. Optimal dynamic partial order
reduction. In POPL. ACM, 373-384. https://doi.org/10.1145/2535838.2535845

Parosh A. Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Carl Leonardsson. 2016. Stateless Model Checking for POWER.
In CAV (LNCS, Vol. 9780). Springer, 134-156. https://doi.org/10.1007/978-3-319-41540-6_8

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Tuan Phong Ngo. 2018. Optimal stateless model checking
under the release-acquire semantics. Proc. ACM Program. Lang. 2, OOPSLA (2018), 135:1-135:29. https://doi.org/10.1145/
3276505

Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases: The Logical Level. Addison-Wesley
Longman Publishing Co., Inc. https://doi.org/10.5555/551350

A. Adir, H. Attiya, and G. Shurek. 2003. Information-flow models for shared memory with an application to the PowerPC
architecture. IEEE Transactions on Parallel and Distributed Systems 14, 5 (2003), 502-515. https://doi.org/10.1109/TPDS.
2003.1199067

S.V. Adve and K. Gharachorloo. 1996. Shared memory consistency models: a tutorial. Computer 29, 12 (1996), 66-76.
https://doi.org/10.1109/2.546611

Jade Alglave. 2010. A Shared Memory Poetics. Thése de doctorat. L’université Paris Denis Diderot.

Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen Ketema, Daniel Poetzl, Tyler Sorensen, and
John Wickerson. 2015. GPU Concurrency: Weak Behaviours and Programming Assumptions. In ASPLOS. ACM, 577-591.
https://doi.org/10.1145/2786763.2694391

Jade Alglave and Patrick Cousot. 2016. Syntax and analytic semantics of LISA. CoRR abs/1608.06583 (2016). https:
//arxiv.org/abs/1608.06583

Jade Alglave, Patrick Cousot, and Luc Maranget. 2016. Syntax and semantics of the weak consistency model specification
language CAT. CoRR abs/1608.07531 (2016). https://arxiv.org/abs/1608.07531

Jade Alglave, Daniel Kroening, and Michael Tautschnig. 2013. Partial Orders for Efficient Bounded Model Checking of
Concurrent Software. In CAV (LNCS, Vol. 8044). Springer, 141-157. https://doi.org/10.1007/978-3-642-39799-8 9

Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan S. Stern. 2018. Frightening Small Children and
Disconcerting Grown-ups: Concurrency in the Linux Kernel. In ASPLOS. ACM, 405-418. https://doi.org/10.1145/3173162.
3177156

Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2012. Fences in weak memory models (extended version).
Formal Methods in System Design 40, 2 (2012), 170-205. https://doi.org/10.1007/s10703-011-0135-z

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Modelling, Simulation, Testing, and Data Mining
for Weak Memory. ACM Trans. Program. Lang. Syst. 36, 2 (2014), 7:1-7:74. https://doi.org/10.1145/2627752

Alasdair Armstrong, Brian Campbell, Ben Simner, Christopher Pulte, and Peter Sewell. 2021. Isla: Integrating Full-Scale
ISA Semantics and Axiomatic Concurrency Models. In CAV (1) (Lecture Notes in Computer Science, Vol. 12759). Springer,
303-316. https://doi.org/10.1007/978-3-030-81685-8_14

Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal Musuvathi. 2010. On the verification problem
for weak memory models. In POPL. ACM, 7-18. https://doi.org/10.1145/1706299.1706303

G. Audemard, A. Cimatti, A. Kornilowicz, and R. Sebastiani. 2002. Bounded Model Checking for Timed Systems. In FORTE.
Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-36135-9_16

Daniel Baier, Dirk Beyer, and Karlheinz Friedberger. 2021. JavaSMT 3: Interacting with SMT Solvers in Java. In CAV (2)
(LNCS, Vol. 12760). Springer, 195-208. https://doi.org/10.1007/978-3-030-81688-9_9

Francois Bancilhon. 1985. Naive Evaluation of Recursively Defined Relations. In On Knowledge Base Management Systems:
Integrating Artificial Intelligence and Database Technologies (Topics in Information Systems). Springer, 165-178. https:
//doi.org/10.1007/978-1-4612-4980-1_17

Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. 2009. Satisfiability Modulo Theories. In
Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, Vol. 185. IOS Press, 825-885. https:
//doi.org/10.3233/FAIA201017

Mark Batty, Alastair F. Donaldson, and John Wickerson. 2016. Overhauling SC atomics in C11 and OpenCL. In POPL. ACM,
634-648. https://doi.org/10.1145/2837614.2837637

Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and Peter Sewell. 2015. The Problem of
Programming Language Concurrency Semantics. In ESOP (LNCS, Vol. 9032). Springer, 283-307. https://doi.org/10.1007/
978-3-662-46669-8_12

Mark Batty, Kayvan Memarian, Scott Owens, Susmit Sarkar, and Peter Sewell. 2012. Clarifying and compiling C/C++
concurrency: from C++11 to POWER. In POPL. ACM, 509-520. https://doi.org/10.1145/2103621.2103717

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ concurrency. In POPL.
ACM, 55-66. https://doi.org/10.1145/1925844.1926394

Dirk Beyer. 2022. Progress on Software Verification: SV-COMP 2022. In TACAS (2). Springer. https://doi.org/10.1007/978-3-
030-99527-0_20

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 129. Publication date: October 2022.

https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1145/3276505
https://doi.org/10.1145/3276505
https://doi.org/10.5555/551350
https://doi.org/10.1109/TPDS.2003.1199067
https://doi.org/10.1109/TPDS.2003.1199067
https://doi.org/10.1109/2.546611
https://doi.org/10.1145/2786763.2694391
https://arxiv.org/abs/1608.06583
https://arxiv.org/abs/1608.06583
https://arxiv.org/abs/1608.07531
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1007/s10703-011-0135-z
https://doi.org/10.1145/2627752
https://doi.org/10.1007/978-3-030-81685-8_14
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1007/3-540-36135-9_16
https://doi.org/10.1007/978-3-030-81688-9_9
https://doi.org/10.1007/978-1-4612-4980-1_17
https://doi.org/10.1007/978-1-4612-4980-1_17
https://doi.org/10.3233/FAIA201017
https://doi.org/10.3233/FAIA201017
https://doi.org/10.1145/2837614.2837637
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1145/2103621.2103717
https://doi.org/10.1145/1925844.1926394
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20

CAAT: Consistency as a Theory 129:29

Hans-Juergen Boehm and Sarita V. Adve. 2008. Foundations of the C++ concurrency memory model. In PLDL ACM, 68-78.
https://doi.org/10.1145/1379022.1375591

James Bornholt and Emina Torlak. 2017. Synthesizing memory models from framework sketches and Litmus tests. In PLDL
ACM, 467-481. https://doi.org/10.1145/3140587.3062353

Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. 2013. Checking and Enforcing Robustness against TSO. In ESOP
(LNCS, Vol. 7792). Springer, 533-553. https://doi.org/10.1007/978-3-642-37036-6_29

Sebastian Burckhardt and Madanlal Musuvathi. 2008. Effective Program Verification for Relaxed Memory Models. In CAV
(LNCS, Vol. 5123). Springer, 107-120. https://doi.org/10.1007/978-3-540-70545-1_12

Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. 2001. Bounded Model Checking Using Satisfiability
Solving. Formal Methods in System Design 19, 1 (2001), 7-34. https://doi.org/10.1023/A:1011276507260

William W. Collier. 1992. Reasoning about parallel architectures. Prentice Hall.

Simon Cooksey, Sarah Harris, Mark Batty, Radu Grigore, and Mikolas Janota. 2019. PrideMM: Second Order Model Checking
for Memory Consistency Models. In FM Workshops (2) (LNCS, Vol. 12233). Springer, 507-525. https://doi.org/10.1007/978-
3-030-54997-8_31

Andrei M. Dan, Yuri Meshman, Martin T. Vechev, and Eran Yahav. 2013. Predicate Abstraction for Relaxed Memory Models.
In SAS (LNCS, Vol. 7935). Springer, 84-104. https://doi.org/10.1007/978-3-642-38856-9_7

Andrei M. Dan, Yuri Meshman, Martin T. Vechev, and Eran Yahav. 2015. Effective Abstractions for Verification under
Relaxed Memory Models. In VMCAI (LNCS, Vol. 8931). Springer, 449-466. https://doi.org/10.1007/978-3-662-46081-8_25

Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. 2020. RustBelt meets relaxed memory. Proc.
ACM Program. Lang. 4, POPL (2020), 34:1-34:29. https://doi.org/10.1145/3371102

Martin Davis, George Logemann, and Donald W. Loveland. 1962. A machine program for theorem-proving. Commun. ACM
5,7 (1962), 394-397. https://doi.org/10.1145/368273.368557

Martin Davis and Hilary Putnam. 1960. A Computing Procedure for Quantification Theory. J. ACM 7, 3 (1960), 201-215.
https://doi.org/10.1145/321033.321034

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT Solver. In TACAS (LNCS, Vol. 4963). Springer, 337-340.
https://doi.org/10.1007/978-3-540-78800-3_24

Brian Demsky and Patrick Lam. 2015. SATCheck: SAT-directed stateless model checking for SC and TSO. In OOPSLA. ACM,
20-36. https://doi.org/10.1145/2814270.2814297

Dave Dice and Alex Kogan. 2019. Compact NUMA-Aware Locks. In EuroSys. ACM, 15 pages. https://doi.org/10.1145/
3302424.3303984

Bruno Dutertre. 2014. Yices 2.2. In CAV (Lecture Notes in Computer Science, Vol. 8559). Springer, 737-744. https://doi.org/10.
1007/978-3-319-08867-9_49

Roman Elizarov, Mikhail A. Belyaev, Marat Akhin, and Ilmir Usmanov. 2021. Kotlin coroutines: design and implementation.
In Onward! ACM, 68-84. https://doi.org/10.1145/3486607.3486751

Herbert B. Enderton. 1972. A mathematical introduction to logic. Academic Press. https://doi.org/10.1016/C2009-0-22107-6

Hongyu Fan, Weiting Liu, and Fei He. 2022. Interference relation-guided SMT solving for multi-threaded program verification.
In PPoPP. ACM, 163-176. https://doi.org/10.1145/3503221.3508424

Natalia Gavrilenko, Hernan Ponce de Leon, Florian Furbach, Keijo Heljanko, and Roland Meyer. 2019. BMC for Weak
Memory Models: Relation Analysis for Compact SMT Encodings. In CAV (LNCS, Vol. 11561). Springer, 355-365. https:
//doi.org/10.1007/978-3-030-25540-4_19

Thomas Haas, Roland Meyer, and Hernan Ponce-de Leon. 2022. CAAT: Consistency as a Theory (Artifact). https:
//doi.org/10.5281/zenodo.7079674

Fei He, Zhihang Sun, and Hongyu Fan. 2021. Satisfiability modulo ordering consistency theory for multi-threaded program
verification. In PLDI. ACM, 1264-1279. https://doi.org/10.1145/3453483.3454108

Yannis E. Ioannidis and Raghu Ramakrishnan. 1988. Efficient Transitive Closure Algorithms. In VLDB. Morgan Kaufmann,
382-394. https://doi.org/10.5555/645915.671829

Daniel Jackson. 2000. Automating First-Order Relational Logic. SIGSOFT Softw. Eng. Notes 25, 6 (2000), 130-139. https:
//doi.org/10.1145/357474.355063

Daniel Jackson. 2003. Alloy: A Logical Modelling Language. In ZB (Lecture Notes in Computer Science, Vol. 2651). Springer, 1.
https://doi.org/10.1007/3-540-44880-2_1

Daniel Jackson. 2019. Alloy: a language and tool for exploring software designs. Commun. ACM 62, 9 (2019), 66-76.
https://doi.org/10.1145/3338843

Alan Jeffrey and James Riely. 2016. On Thin Air Reads Towards an Event Structures Model of Relaxed Memory. In LICS.
ACM, 759-767. https://doi.org/10.1145/2933575.2934536

Egor George Karpenkov, Karlheinz Friedberger, and Dirk Beyer. 2016. JavaSMT: A Unified Interface for SMT Solvers in Java.
In VSTTE (LNCS, Vol. 9971). Springer, 139-148. https://doi.org/10.1007/978-3-319-48869-1_11

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 129. Publication date: October 2022.

https://doi.org/10.1145/1379022.1375591
https://doi.org/10.1145/3140587.3062353
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/978-3-540-70545-1_12
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1007/978-3-030-54997-8_31
https://doi.org/10.1007/978-3-030-54997-8_31
https://doi.org/10.1007/978-3-642-38856-9_7
https://doi.org/10.1007/978-3-662-46081-8_25
https://doi.org/10.1145/3371102
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/321033.321034
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2814270.2814297
https://doi.org/10.1145/3302424.3303984
https://doi.org/10.1145/3302424.3303984
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1145/3486607.3486751
https://doi.org/10.1016/C2009-0-22107-6
https://doi.org/10.1145/3503221.3508424
https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.5281/zenodo.7079674
https://doi.org/10.5281/zenodo.7079674
https://doi.org/10.1145/3453483.3454108
https://doi.org/10.5555/645915.671829
https://doi.org/10.1145/357474.355063
https://doi.org/10.1145/357474.355063
https://doi.org/10.1007/3-540-44880-2_1
https://doi.org/10.1145/3338843
https://doi.org/10.1145/2933575.2934536
https://doi.org/10.1007/978-3-319-48869-1_11

129:30 Thomas Haas, Roland Meyer, and Hernan Ponce de Ledn

Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019a. Model checking for weakly consistent libraries. In
PLDI. ACM, 96-110. https://doi.org/10.1145/3314221.3314609

Michalis Kokologiannakis, Xiaowei Ren, and Viktor Vafeiadis. 2019b. Dynamic Partial Order Reductions for Spinloops. In
FMCAD. TU Wien Academic Press, 163-172. https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_25

Michalis Kokologiannakis and Viktor Vafeiadis. 2021. GenMC: A Model Checker for Weak Memory Models. In CAV (LNCS,
Vol. 12759). Springer, 427-440. https://doi.org/10.1007/978-3-030-81685-8_20

Nikita Koval, Dmitry Khalanskiy, and Dan Alistarh. 2021. A Formally-Verified Framework for Fair Synchronization in Kotlin
Coroutines. CoRR abs/2111.12682 (2021). https://arxiv.org/abs/2111.12682

Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming release-acquire consistency. In POPL. ACM, 649-662.
https://doi.org/10.1145/2837614.2837643

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing sequential consistency in
C/C++11. In PLDI. ACM, 618-632. https://doi.org/10.1145/3062341.3062352

Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. [EEE
Trans. Computers 28, 9 (1979), 690-691. https://doi.org/10.1109/TC.1979.1675439

Stella Lau, Victor B. F. Gomes, Kayvan Memarian, Jean Pichon-Pharabod, and Peter Sewell. 2019. Cerberus-BMC: A Principled
Reference Semantics and Exploration Tool for Concurrent and Sequential C. In CAV (LNCS, Vol. 11561). Springer, 387-397.
https://doi.org/10.1007/978-3-030-25540-4_22

K. Rustan M. Leino. 2008. This is Boogie 2. (2008). https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-
2/

Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian, Jade Alglave, Scott Owens, Rajeev Alur, Milo M. K.
Martin, Peter Sewell, and Derek Williams. 2012. An Axiomatic Memory Model for POWER Multiprocessors. In CAV
(Lecture Notes in Computer Science, Vol. 7358). Springer, 495-512. https://doi.org/10.1007/978-3-642-31424-7_36

Yatin A. Manerkar, Caroline Trippel, Daniel Lustig, Michael Pellauer, and Margaret Martonosi. 2016. Counterexamples and
Proof Loophole for the C/C++ to POWER and ARMv?7 Trailing-Sync Compiler Mappings. CoRR abs/1611.01507 (2016).
https://arxiv.org/abs/1611.01507

Jeremy Manson, William Pugh, and Sarita V. Adve. 2006. The Java memory model. In POPL. ACM, 378-391. https:
//doi.org/10.1145/1040305.1040336

Roland Meyer and Sebastian Wolff. 2019. Decoupling lock-free data structures from memory reclamation for static analysis.
PACMPL 3, POPL (2019), 58:1-58:31. https://doi.org/10.1145/3290371

Roland Meyer and Sebastian Wolff. 2020. Pointer life cycle types for lock-free data structures with memory reclamation.
PACMPL 4, POPL (2020), 68:1-68:36. https://doi.org/10.1145/3371136

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 1999. Principles of program analysis. Springer. https://doi.org/10.
1007/978-3-662-03811-6

Jonas Oberhauser, Rafael Lourenco de Lima Chehab, Diogo Behrens, Ming Fu, Antonio Paolillo, Lilith Oberhauser, Koustubha
Bhat, Yuzhong Wen, Haibo Chen, Jaeho Kim, and Viktor Vafeiadis. 2021. VSync: push-button verification and optimization
for synchronization primitives on weak memory models. In ASPLOS. ACM, 530-545. https://doi.org/10.1145/3445814.
3446748

Derek C Oppen. 1980. Complexity, convexity and combinations of theories. Theoretical computer science 12, 3 (1980),
291-302. https://doi.org/10.1016/0304-3975(80)90059-6

Antonio Paolillo, Hernan Ponce de Ledn, Diogo Behrens Thomas Haas, Rafael Lourenco de Lima Chehab, Ming Fu, and Roland
Meyer. 2022. Verifying and Optimizing Compact NUMA-Aware Locks on Weak Memory Models. CoRR abs/2111.15240
(2022). https://arxiv.org/abs/2111.15240

Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2019. Bridging the gap between programming languages and hardware
weak memory models. PACMPL 3, POPL (2019), 69:1-69:31. https://doi.org/10.1145/3290382

Hernan Ponce de Leon, Florian Furbach, Keijo Heljanko, and Roland Meyer. 2017. Portability Analysis for Weak Memory
Models. PORTHOS: One Tool for all Models. In SAS (LNCS, Vol. 10422). Springer, 299-320. https://doi.org/10.1007/978-3-
319-66706-5_15

Hernan Ponce de Leén, Florian Furbach, Keijo Heljanko, and Roland Meyer. 2018. BMC with Memory Models as Modules.
In FMCAD. IEEE, 1-9. https://doi.org/10.23919/FMCAD.2018.8603021

Hernan Ponce de Ledn, Florian Furbach, Keijo Heljanko, and Roland Meyer. 2020. Dartagnan: Bounded Model Checking
for Weak Memory Models (Competition Contribution). In TACAS (2) (LNCS, Vol. 12079). Springer, 378-382. https:
//doi.org/10.1007/978-3-030-45237-7_24

Pablo Ponzio, Ariel Godio, Nicolas Rosner, Marcelo Arroyo, Nazareno Aguirre, and Marcelo F. Frias. 2021. Efficient Bounded
Model Checking of Heap-Manipulating Programs using Tight Field Bounds. In FASE. Springer International Publishing,
218-239. https://doi.org/10.1007/978-3-030-71500-7_11

Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell. 2018. Simplifying ARM concurrency:
multicopy-atomic axiomatic and operational models for ARMv8. PACMPL 2, POPL (2018), 19:1-19:29. https://doi.org/10.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 129. Publication date: October 2022.

https://doi.org/10.1145/3314221.3314609
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_25
https://doi.org/10.1007/978-3-030-81685-8_20
https://arxiv.org/abs/2111.12682
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1007/978-3-030-25540-4_22
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://doi.org/10.1007/978-3-642-31424-7_36
https://arxiv.org/abs/1611.01507
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/3290371
https://doi.org/10.1145/3371136
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1145/3445814.3446748
https://doi.org/10.1145/3445814.3446748
https://doi.org/10.1016/0304-3975(80)90059-6
https://arxiv.org/abs/2111.15240
https://doi.org/10.1145/3290382
https://doi.org/10.1007/978-3-319-66706-5_15
https://doi.org/10.1007/978-3-319-66706-5_15
https://doi.org/10.23919/FMCAD.2018.8603021
https://doi.org/10.1007/978-3-030-45237-7_24
https://doi.org/10.1007/978-3-030-45237-7_24
https://doi.org/10.1007/978-3-030-71500-7_11
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3158107

CAAT: Consistency as a Theory 129:31

1145/3158107

Liam Roditty. 2008. A Faster and Simpler Fully Dynamic Transitive Closure. 4, 1 (2008). https://doi.org/10.1145/1328911.
1328917

Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. 2011. Understanding POWER multiprocessors.
In PLDI ACM, 175-186. https://doi.org/10.1145/1993316.1993520

Roberto Sebastiani. 2007. Lazy Satisability Modulo Theories. J. Satisf. Boolean Model. Comput. 3, 3-4 (2007), 141-224.
https://doi.org/10.3233/SAT190034

Dennis Shasha and Marc Snir. 1988. Efficient and Correct Execution of Parallel Programs That Share Memory. ACM Trans.
Program. Lang. Syst. 10, 2 (apr 1988), 282-312. https://doi.org/10.1145/42190.42277

Ben Simner, Alasdair Armstrong, Jean Pichon-Pharabod, Christopher Pulte, Richard Grisenthwaite, and Peter Sewell.
2022. Relaxed virtual memory in Armv8-A. In ESOP (Lecture Notes in Computer Science, Vol. 13240). Springer, 143-173.
https://doi.org/10.1007/978-3-030-99336-8_6

Ben Simner, Shaked Flur, Christopher Pulte, Alasdair Armstrong, Jean Pichon-Pharabod, Luc Maranget, and Peter Sewell.
2020. ARMv8-A System Semantics: Instruction Fetch in Relaxed Architectures. In ESOP (Lecture Notes in Computer
Science, Vol. 12075). Springer, 626—-655. https://doi.org/10.1007/978-3-030-44914-8_23

Pradeep S. Sindhu, Jean-Marc Frailong, and Michel Cekleov. 1992. Formal Specification of Memory Models. Springer US,
Boston, MA, 25-41. https://doi.org/10.1007/978-1-4615-3604-8_2

Robert Tarjan. 1971. Depth-first search and linear graph algorithms. In 12th Annual Symposium on Switching and Automata
Theory (swat 1971). 114-121. https://doi.org/10.1109/SWAT.1971.10

Emina Torlak and Daniel Jackson. 2007. Kodkod: A Relational Model Finder. In TACAS (Lecture Notes in Computer Science,
Vol. 4424). Springer, 632-647. https://doi.org/10.1007/978-3-540-71209-1_49

Emina Torlak, Mandana Vaziri, and Julian Dolby. 2010. MemSAT: Checking axiomatic specifications of memory models. In
PLDI. ACM, 341-350. https://doi.org/10.1145/1809028.1806635

Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: Navigating weak memory with ghosts, protocols, and
separation. In OOPSLA. ACM, 691-707. https://doi.org/10.1145/2660193.2660243

Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Morisset, and Francesco Zappa Nardelli. 2015. Common
Compiler Optimisations are Invalid in the C11 Memory Model and what we can do about it. In POPL. ACM, 209-220.
https://doi.org/10.1145/2676726.2676995

Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed separation logic: A program logic for C11 concurrency. In OOPSLA.
ACM, 867-884. https://doi.org/10.1145/2544173.2509532

Douglas B. West. 2000. Introduction to Graph Theory. Prentice Hall.

John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constantinides. 2017. Automatically Comparing Memory
Consistency Models. In POPL. ACM, 190-204. https://doi.org/10.1145/3093333.3009838

David Zhao, Pavle Subotic, and Bernhard Scholz. 2019. Provenance for Large-scale Datalog. CoRR abs/1907.05045 (2019).
https://arxiv.org/abs/1907.05045

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 129. Publication date: October 2022.

https://doi.org/10.1145/3158107
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3158107
https://doi.org/10.1145/1328911.1328917
https://doi.org/10.1145/1328911.1328917
https://doi.org/10.1145/1993316.1993520
https://doi.org/10.3233/SAT190034
https://doi.org/10.1145/42190.42277
https://doi.org/10.1007/978-3-030-99336-8_6
https://doi.org/10.1007/978-3-030-44914-8_23
https://doi.org/10.1007/978-1-4615-3604-8_2
https://doi.org/10.1109/SWAT.1971.10
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1145/1809028.1806635
https://doi.org/10.1145/2660193.2660243
https://doi.org/10.1145/2676726.2676995
https://doi.org/10.1145/2544173.2509532
https://doi.org/10.1145/3093333.3009838
https://arxiv.org/abs/1907.05045

	Abstract
	1 Introduction
	2 Consistency as a Theory
	2.1 A Language for Consistency
	2.2 Semantics
	2.3 From Consistency Models to Theories

	3 Fragments of Consistency Models and Their Properties
	3.1 Domain Independence
	3.2 Semi-Positivity

	4 Satisfiability Modulo Tcm
	4.1 Satisfiability Modulo Theories
	4.2 A Decision Procedure for Tcm

	5 Cutting
	6 BMC with Memory Models as Inputs
	7 Evaluation
	8 Related Work
	9 Future Work
	10 Data Availability Statement
	References

