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The goal of this work is to improve the efficiency of bounded model checkers that are modular in the

memory model. Our first contribution is a static analysis for the given memory model that is performed

as a preprocessing step and helps us significantly reduce the encoding size. Memory model make use of

relations to judge whether an execution is consistent. The analysis computes bounds on these relations: which

pairs of events may or must be related. What is new is that the bounds are relativized to the execution of

events. This makes it possible to derive, for the first time, not only upper but also meaningful lower bounds.

Another important feature is that the analysis can import information about the verification instance from

external sources to improve its precision. Our second contribution are new optimizations for the SMT encoding.

Notably, the lower bounds allow us to simplify the encoding of acyclicity constraints. We implemented our

analysis and optimizations within a bounded model checker and evaluated it on challenging benchmarks. The

evaluation shows up-to 40% reduction in verification time (including the analysis) over previous encodings.

Our optimizations allow us to efficiently check safety, liveness, and data race freedom in Linux kernel code.
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1 INTRODUCTION

In the verification of fine-grained concurrent programs, it has long been recognized [Burckhardt

et al. 2006, 2007; Burckhardt and Musuvathi 2008] that the memory model of the underlying

platform cannot be ignored. Fine-grained concurrent programs do not preserve the data race

freedom guarantee [Adve and Hill 1990], and therefore the assumption of a sequentially consistent

memory [Lamport 1979] is not justified. The verification community has taken up the challenge

and, over the past decade, developed practical algorithms for a range of platforms [Abdulla et al.

2015, 2016; Dan et al. 2015; Demsky and Lam 2015; Kuperstein et al. 2011; Norris and Demsky

2013, 2016] underpinned by theoretical results about the decidability and complexity status of

the corresponding verification problems [Abdulla et al. 2020, 2021; Atig et al. 2010, 2012; Krishna

et al. 2022; Lahav and Boker 2020, 2022]. After an initial enthusiasm about the outburst of results,

however, the massive need for new technology felt daunting.
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Developing a verification tool is a major undertaking of several years over which the range of

relevant memory models grows, not only due to new developments but also due to corrections of

existingmodels. To give a non-exhaustive list of memorymodels that have been studied:TSO [Sarkar

et al. 2009], Power [Mador-Haim et al. 2012; Sarkar et al. 2011], ARM in versions 7 [Alglave et al.

2014b] and 8 [Alglave et al. 2021; Pulte et al. 2018], Java [Bender and Palsberg 2019; Manson et al.

2006], C11 [Vafeiadis et al. 2015] in a number of revisions [Batty et al. 2016; Lahav et al. 2017],

and recently the Linux kernel memory model (LKMM) [Alglave et al. 2018]. In a sense, this is a

race between the programming languages and systems communities coming up with new memory

models, and the verification community trying to keep up. A feeling in the verification community

emerged that, with the classical technology, this race could not be won. The way out was to lift the

level of abstraction at which verification tools would work.

There is a trend towards verification technology that is modular in the memory model: that can

easily exchange the memory model or even accept a description of it as input. This modularity

was made possible by the insight that, despite all semantic differences, most memory models

can be formalized in the same specification language: CAT [Alglave 2010; Alglave et al. 2014b].

Interestingly, the first modular tool,MemSat [Torlak et al. 2010], was proposed around the same

time, but targeted a different formalism and weaker class of models. With Herd7, Alglave et al.

[2014b] developed the first tool for the CAT language. Since then, a landscape of techniques

evolved. For proving program correctness, modular approaches have remained largely unexplored,

with the program logics due to Alglave and Cousot [2017]; Doherty et al. [2022] being the only

representatives. For bug hunting, there is more. Modular bug hunting tools fall into two categories

that have orthogonal strengths: stateless model checkers and bounded model checkers.

Stateless model checkers [Godefroid 1996] execute the program in a systematic way in order

to explore the state space. The approach is very efficient under a moderate number of executions,

and the notion of execution can be chosen to incorporate partial order and symmetry information.

Nidhugg [Abdulla et al. 2015] is a stateless model checker which reasons about the TSO memory

model and has some support for Power and ARMv7 [Abdulla et al. 2016]. Its exploration algorithm

is parametric in the definition of traces. Adding support for a model requires coming up with a new

notion of trace that captures the intended semantics. Kokologiannakis and Vafeiadis [2020, 2021]

developed GenMC, a modular stateless model checker. GenMC has been successfully applied to the

verification of synchronization primitives [Oberhauser et al. 2021] and complex data structures [Beck

et al. 2023;Wang et al. 2022]. The implementation supports RC11 [Lahav et al. 2017] and IMM [Lahav

et al. 2017], but has not yet been lifted to industrial models like ARMv8, RISC-V, or LKMM.

The alternative technology are bounded model checkers [Clarke et al. 2001]. They statically

encode the verification task into a logical formula that is satisfiable if and only if the program has a

bug. Well-maintained SMT solvers developed in long-term efforts likeMathsat5 [Cimatti et al.

2013], Yices2 [Dutertre 2014], or Z3 [De Moura and Bjørner 2008] are then used to discharge the

satisfiability problem. Modular bounded model checkers (that take into account a memory model)

can be implemented in eager and lazy style. The eager method is to encode the entire verification

problem into the logical theories supported by the SMT backend. This was the approach followed

in the early versions of Dartagnan [Gavrilenko et al. 2019; Ponce de León et al. 2017, 2018]. While

flexible, the prohibitively large encoding of the memory model hindered scalability.

He et al. [2021] observed that the memory model significantly increases the encoding size,

although only few clauses are needed to determine the satisfiability status. They developed dedicated

logical theories that capture the consistency requirements of store atomic memory models and

integrated them into the SMT solver [Sun et al. 2022]. Inspired by this, the Dartagnan team

showed that nearly arbitrary CAT models can be turned into logical theories [Haas et al. 2022].

With logical theories for consistency, bounded model checkers can be implemented in lazy style,
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meaning the consistency requirement is understood natively by the solver and does not have to be

encoded. This approach is taken by deagle [He et al. 2021] and the recent version of Dartagnan.

Motivation. This paper starts from the observation that modular bounded model checkers which

are implemented in lazy style cannot handle certain correctness conditions. To understand the

problem, note that a memory model distinguishes between so-called base relations and derived

relations. The base relations define the execution: the program order, the address and data depen-

dencies, the read-from relation, and memory coherence. The derived relations have a different role,

they are used to judge whether the execution should be considered consistent. This means the

derived relations do not introduce new information to the execution but are computed from the

base relations. The problem with lazy bounded model checkers is that their SMT encoding can

only access the base relations. The derived relations are not mentioned in the encoding, but only

computed inside the consistency theory solver. Indeed, removing the derived relations from the

eager SMT encoding was precisely the goal of the lazy approach.

Lazy bounded model checkers cannot handle correctness conditions

that are formulated in terms of derived relations of the memory model.

To develop an intuition to the correctness conditions that the lazy approach cannot handle,

consider the task of detecting data races in the Linux kernel. The definition of a data race is almost

the standard one: there is an execution with two unordered instructions that access a common

location and at least one is a write. The point is that the notion of order refers to the Linux happens-

before relation, a derived relation in LKMM [Alglave et al. 2018]. Since a lazy bounded model

checker does not encode this derived relation, it cannot encode the correctness condition either. It

would be attractive to extend the consistency theory solvers [Haas et al. 2022; Sun et al. 2022] that

are behind the lazy approach to support DRF natively, but this seems to be very hard to do. The

problem is that DRF is formulated negatively, yet the theory solver has to give an explanation of

inconsistency to the SMT solver’s SAT engine. How can one explain to the SAT engine that there is

no race and then guide it to find a race? The absence of a race is a universal statement, and to rule

out the given execution one would have to formulate that for every pair of instructions there is no

race (without new ideas, the resulting explanation would be a large disjunction of conjunctions).

The problem did not go unnoticed. Haas et al. [2022] proposed the technique of cutting to add

derived relations to the lazy encoding. For relations like happens-before (that incorporate a large

number of derived relations), however, cutting corresponds to encoding a large portion of the

memory model, and thus means switching from lazy to eager bounded model checking.

Correctness of concurrent Linux kernel code is a problem that has recently attracted attention.

The reason is a series of issues with qspinlock [Corbet 2014], one of the main synchronization

mechanisms in the kernel. The lock provides good performance, fairness guarantees [Corbet 2008],

and overcomes what is known as the cache-line bouncing problem [Corbet 2013b]. These benefits

are the result of a complex algorithm with a number of low-level optimizations. Unfortunately, the

optimizations turned out complicated enough to cause troubles. Under LKMMv6.2, it was shown

that qspinlock does not guarantee mutual exclusion, it can deadlock, and has a data race [Paolillo

et al. 2021]. This lead to a revision in LKMMv6.3 [Stern 2023] that addressed the former issues. The

data race, however, was not removed but classified as benign. Such a classification is a conscious

decision that requires developers to know about the data race in the first place.

The kernel data race detection problem is still considered unsolved.

As argued above, the recent lazy bounded model checkers cannot formulate the data race. Eager

bounded model checkers would be applicable in principle, but have scalability issues. Stateless

model checkers do not support LKMM. Even specialized race detectors like the kernel sanitizer
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Fig. 1. Workflow of the improved eager encoding with contributions highlighted.

KCSAN cannot handle the entire model: ”Note, KCSAN will not report all data races due to missing

memory ordering[...]” [kcs 2023]. Interestingly, solving the data race detection problem under the

C/C++ memory model has seen more success [Luo and Demsky 2021].

There are further properties beyond DRF that require constraints on derived relations. As a rule

of thumb, derived relations come into play whenever the correctness statement depends on the

synchronization among threads. This is true for locking [C11 2023; lin 2023a], RCU [lin 2023b]

(RCU locks and unlocks, misuse of SRCU), and interrupts, to give examples. Constraints on derived

relations are also used to sanitize the memory model rather than the program [lin 2023c]. All these

applications require reasoning about derived relations, usually involving a negative formulation,

that cannot be handled by the existing consistency theory solvers [Haas et al. 2022; Sun et al. 2022].

In the light of the above, we believe there is a need to improve the scalability of modular

bounded model checking tools that rely on eager SMT encodings. A particular use case is data race

detection in the Linux kernel. A classical strategy to improve the scalability of verification tools is

to perform an upfront static analysis of the program to obtain information, like moverness or alias

information, that reduces the search space. For the new input of modular verification tools, namely

the memory model, corresponding analyses are almost non-existent, with the rare exceptions being

the early [Torlak et al. 2010] and [Gavrilenko et al. 2019]. The works [Kokologiannakis et al. 2023;

Mador-Haim et al. 2010; Wickerson et al. 2017] compare memory models, which is different.

Contribution. We propose the first static analysis for memory models written in CAT that can

give not only upper but also lower bounds for relations. The analysis alleviates the scalability

issues of the eager encoding by introducing the workflow depicted in Figure 1. Before the SMT

encoding, we analyze the memory model. The resulting information enables new optimizations

of the SMT encoding that are also contributions of this paper. An interesting aspect of our static

analysis for memory models is that its precision can be improved by providing information about

the program at hand. This information is expected in a standardized format and can be obtained

with off-the-shelf program analysis tools.

The challenge in analyzing memory models is that the CAT language is very different from the

imperative, functional, or declarative languages typically analyzed. There are three things that

make CAT stand out: it works over relational algebras, has recursive definitions, and there is a

program and a correctness condition behind the memory model. If anything, CAT can be seen as a

blend of Alloy [Jackson 2003, 2019] and datalog [Ceri et al. 1989]. A consequence of this unique

combination is that CAT requires unconventional constructs for its static analysis.

Our first contribution is a reformulation of the CAT semantics that is better suited for static

analysis. By a reformulation, we mean that we define a new semantics and prove it to coincide with

the standard semantics. The unconventional construct behind our new semantics is that of a filter.

Filters can be understood as a mechanism to remove, from a given set of executions, executions
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that should be considered inconsistent, say because they violate an equation of the memory model.

We have not invented filters from scratch. Axiomatic semantics always view the memory model

as a filter [Alglave 2010; Alglave et al. 2014b; Jackson 2003]. In abstract interpretation, filters

are strengthened to lower closure operators [Cousot 2021, Chapter IV, Section 11.7] and used to

approximate the conditions in if- and while-constructs [Cousot 2021, Chapter IX, Section 29].

What we observe is that filters are useful for the static analysis of memory models.

The first benefit of the filter semantics is that it is flexible enough to incorporate information

about the verification instance (the program and the correctness condition). The added information

will reduce the set of executions denoted by the memory model and hence improve the precision

of the static analysis. We achieve this flexibility by defining the new semantics to be parametric

in a set of filters. This is made possible by the fact that the filter semantics is compositional. Our

insight is that not only the memory model itself acts as a filter, but it also decomposes into smaller

filters. For example, to incorporate information about the program p at hand, we define a program

filter 5p and obtain the instantiation of our new semantics [[mm]] { 5p } = [[mm]] ∩ [[p]] = [[p]]mm.

Given the program filter, the new semantics coincides with the semantics of the program under the

memory model. When performing a static analysis of the new semantics, we will approximate 5p by

static information about the program. In this sense, filters serve as an interface to external analyses.

In our implementation, we rely on control-flow and alias analyses.

The second benefit of the new semantics is that it admits precise approximations. The observation

is that memory models propagate information in two directions. They compute, bottom-up, from

the base relations the derived relations that are evaluated in axioms. But the axioms also constrain,

top-down, the derived and therefore the base relations that can occur in consistent executions.

Filters make this bidirectionality explicit. We approximate them in a precise way by not only

defining forward but also backward approximations of the operations supported by CAT. Forward

and backward approximations have been prominently used in the abstract interpretation of logic

programs [Cousot and Cousot 1992], but our abstract domain is entirely different.

The third benefit of the filter semantics is that it is easy to generalize. To incorporate a new

base relation, say for mixed-size accesses, the only thing to do is devise an appropriate filter.

The semantics (and so the analysis that builds on it) will then (automatically) take the filter into

account, and thus understand how to deal with the new base relation. Again, we rely here on the

compositionality of the new semantics.

Our second contribution is the actual static analysis for the new semantics. To be able to run it as

a preprocessing step to bounded model checking, the analysis has to be efficient. At the same time,

it has to be precise to make sure the analysis information significantly simplifies the SMT encoding.

We meet this trade-off with the design of the abstract domain. We approximate a relation n by a

triple (acf,must(n),may(n)). The so-called must-setmust(n) will form a lower bound and the may-

set may(n) an upper bound for the relation. Importantly, the meaning of these sets is relativized to

the occurrence of events. Membership (x1, x2) ∈ must(n) does not mean that the events x1 and x2
will definitely be related by n in every consistent execution, but it means they will definitely be

related whenever they occur. Similarly, (x1, x2) ∈ may(n) says that there is a consistent execution in

which the two events occur and are related by n. Without this relativization, it is impossible to

compute lower bounds: if events are missing in an execution, should they be considered related?

Upper bounds for relations have been proposed before in Dartagnan [Gavrilenko et al. 2019].

AlsoMusketeer [Alglave et al. 2014a] computes upper bounds on the inter-thread communication

relation to find critical cycles for fence insertion. Kodkod [Torlak 2009] has upper and lower bounds,

but the relations are absolute in the sense that they are not tied to an execution.MemSat computes

bounds in a setting similar to ours [Torlak et al. 2010], but can give lower bounds only under
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absolute knowledge: there has to be a guarantee that the events occur in all executions. Neither

Kodkod norMemSat handle the non-linear recursion needed for models like LKMM and Power.

Unrolling fixed points does not scale as discussed in [Haas et al. 2022; Wickerson et al. 2017]. In the

setting of finite model finding for first-order theories with recursion, [Wittocx et al. 2013] computes

atoms that must be true resp. false in all models, but again lacks a notion of relativization. The

definition of relativized sets for the computation of lower bounds is a main contribution of ours.

May- and must-sets are, in the static analysis sense, non-relational [Cousot 2021, Chapter IX]:

membership of one pair in a set does not allow us to draw conclusions about membership of another.

This loss of information makes it difficult to fill must-sets. To overcome the problem, our abstract

domain has an abstract control-flow component acf that maintains relational information about the

execution of events. It contains implications of the form x1 → x2 and x1 → ¬x2 saying that if event
x1 occurs in an execution, then so does x2 (resp. x2 has to be missing). While the memory model

cannot provide abstract control-flow information, a program filter that is given to the concrete

semantics as a parameter will do so. We thus enrich the abstract domain (by acf) to be able to exploit
information from external analyses. To see how the abstract control flow helps us fill must-sets, let

(x, y), (y, z) ∈ must(n), and x→ y ∈ acf. We claim that also (x, z) ∈ must(n; n), where ; is relation
composition. To see this, consider an execution in which x and z occur. By x→ y, also y occurs.

Now the must-set says that (x, y) and (y, z) are related by n. Hence, (x, z) is related by n; n.
Our third contribution are two novel optimizations for the eager SMT encoding of CAT models.

The first optimization simplifies the encoding of acyclicity axioms. The problem is that every edge

which may be part of a cycle adds a constraint in integer difference logic (IDL) [Gebser et al. 2014],

and these constraints slow-down the solver. Our optimization removes the IDL constraints for

edges that are shortcuts of longer paths. The notion of shortcut is again defined in a relative way:

if the edge occurs in an execution, so does the path. This is precisely the information our must-sets

give, and the optimization cannot be implemented without them. Satune [Gorjiara et al. 2020] has a

transitivity analysis that is related in that it applies to sets of graphs and relies on must-information

about edges. The difference to our work is that the must-information is absolute: the corresponding

edges have to exist in every graph in the set. Our optimization works with relativized must-sets

(nodes may be missing in an execution), and our reasoning is all about this relativization.

Our second optimization reduces the size of the SMT encoding for (recursive) equations. The

problem is that one equation like let d := r translates into a large number of equivalences

d (x, y) ↔ r (x, y), namely one equivalence for each pair of events (x, y) in the program. The

optimization removes equivalences for which it can statically determine that they have no influence

on the axioms, and hence the satisfiability of the encoding. Imagine the only axiom is empty(n∩ d)
and (x, y) ∉ may(n). Then we can safely skip the above equivalence. This may, in turn, render

other equivalences irrelevant. The optimization is inspired by the magic sets transformation for

improved datalog query evaluation [Bancilhon et al. 1986]. It also has a precursor in [Gavrilenko

et al. 2019], but the lower bounds we compute allow us to strengthen that work.

Our last contribution is an implementation of the new static analysis and optimization algorithms

inside a bounded model checker [Clarke et al. 2001]. We evaluated the implementation on a

benchmark suite consisting of (i) ten challenging fine-grained concurrent programs, (ii) safety,

liveness, and data race freedom as the correctness criteria, and (iii) memory models that no other

tool supports over such complex benchmarks, namely ARMv8, RISC-V, and LKMM. The results

are favorable, we experience a reduction in verification time of almost 40% over the optimization

from [Gavrilenko et al. 2019]. Coming back to the correctness of qspinlock under LKMM: our

optimized eager encoding finds the data race in minutes (from 2 to 10), and proves a fixed version

of the program correct in 1.5h, including an analysis of safety and liveness requirements. As always
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1 #define N ... // Parameter of the Program

2 int i = 1, j = 1;

3

4 void thread_i () {

5 for (int p = 0; p < N; p++) {

6 i = i + j;

7 }}

8

9 void thread_j () {

10 for (int q = 0; q < N; q++) {

11 j = j + i;

12 }}

13

14 void main() {

15 // The (2N+2)-th Fibonacci Number

16 int correct = fib(2*N + 2);

17 assert (i <= correct && j <= correct);

18 }

/* Coherence -after */

let ca = fr ∪ co

/* Internal visibility requirement */

acyclic (po ∩ loc) ∪ ca ∪ rf

/* Observed -by */

let obs = rfe ∪ fre ∪ coe

/* Dependency -ordered -before */

let dob = addr ∪ data

∪ ctrl; [W]

∪ addr; po; [W]

∪ (ctrl ∪ data); coi

∪ (addr ∪ data); rfi

/* Ordered -before */

let ob = obs ∪ dob

/* External visibility requirement */

acyclic ob

Fig. 2. Fibonacci program (le�) and snippet of memory model ARMv8 [Pulte et al. 2018] (right).

in bounded model checking, our programs are unrolled and hence loop-free versions of the original

code, and correctness is only guaranteed up to the unrolling bound.

To summarize, we make the following contributions.

• We give a new semantics for the CAT language that is designed with static analysis in mind:

it is easy to approximate in a precise way, and it can integrate information about the verification

instance that has been obtained with external analyses.

• We give a precise and efficient static analysis for CAT. It approximates relations by lower and

upper bounds. Importantly, the bounds are defined relative to the execution of events. We obtain

this execution information by linking the analysis to the external information in the new semantics.

• We propose two new optimizations for the eager SMT encoding of CAT models. The first

reduces the number of IDL constraints. The optimization is only made possible by the lower bound

information we compute. The second optimization improves the encoding of (recursive) equations.

• We have implemented the techniques inside a modular bounded model checker and evaluated

the resulting tool on a comprehensive benchmark suite.

2 OVERVIEW

The semantics of a concurrent program p under a memory model mm is the set of so-called

executions [[p]]mm = [[p]] ∩ [[mm]]. We are interested in analyzing this semantics with the help of

bounded model checking. To this end, we assume that the program is acyclic and encode the above

set into a formula of the form i = ip ∧ imm ∧ ikey . The satisfying assignments are precisely the

executions that are possible in the program and also consistent according to the memory model.

We will introduce ikey in a moment.

Our goal is to improve the SMT encoding, to find a formula that is equisatisfiable to i but simpler

to solve. If the program comes with assertions, then equisatisfiability is enough to find bugs. Our

approach is to perform a static analysis of [[p]]mm determining information that is valid over all

executions in the program semantics and hence need not be encoded. It is well-known how to

statically analyze the program semantics [[p]]. We propose a new analysis for the semantics of the

memory model [[mm]]. To understand which static information will be helpful to simplify the SMT

encoding, we explain this semantics and its encoding on a running example.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 279. Publication date: October 2023.



279:8 Thomas Haas, René Maseli, Roland Meyer, and Hernán Ponce de León

2.1 Running Example

Consider the concurrent implementation of the Fibonacci sequence executed on ARMv8 [Pulte

et al. 2018] given in Figure 2. The program has two threads that repeatedly add up numbers 8 and 9 .

The number of additions is given as a parameter # so that the program is essentially acyclic. The

correctness condition says that fib(2# + 2) will never be exceeded.
Whether or not the assertion is met depends on the memory model of the underlying platform.

Interestingly, the program is correct under very weak consistency requirements: it should not

be possible to invent values out-of-thin-air. ARMv8 guarantees this. It models a processor with

a store-atomic shared memory, meaning a write, once it arrives in memory, becomes visible to

all threads. Writes to different memory locations may arrive in memory in an order that deviates

from the program text, as long as it respects address and data dependencies. All this is captured

in the memory model through the axiom acyclic ob, saying that a relation named ob should not

contain contradictions. The relation is defined as a union of a relation named obs that tracks the
observations threads make about the shared memory, and another relation called dob tracking the

thread-local dependencies.

2.2 Memory Models

We consider memory models defined in the CAT language [Alglave 2010; Alglave et al. 2014b] as

given in Figure 3. A memory model consists of binary relations and constraints, so-called axioms,

mm ::= def | const | mm ∧mm

const ::= acyclic(r) | irreflexive(r) | empty(r)

def ::= let d := r | let rec d := r (and d := r)∗

r ::= b | d | r−1 | r ; r | r ∩ r | r ∪ r | r \ r

b ::= po | rf | co | loc | [C] | C × C | . . .

C ::= W | R | F | . . .

Fig. 3. Grammar for memory models.

over those binary relations. The axioms are emptiness,

irreflexivity, and acyclicity. Relations may be derived

from other relations using the following operations:

union (∪), intersection (∩), difference (\), composi-

tion (;), and inverse (•−1). Derived relations may be

named let d := A , drawing their names from an un-

specified set of relation names D. In this case, we call

let d := A a defining equation for d. Derived relations

may also be defined by mutual recursion, let rec d1 := A1 and . . . and d: := A: or let rec ®d := ®A
to shorten the syntax. There is a predefined set B, disjoint from D, of relation names to which

we refer to as base relations. We denote by R = B ∪ D the set of all relation names. We expect

well-formedness: (i) each relation name is defined at most once, (ii) recursively dependent relations

are defined within the same let rec construct, and (iii) recursion is monotonic.

We explain these concepts on ARMv8 of Figure 2 (right). The relations ca, obs, dob, and ob are

all derived relations that have been named. They are derived from other relations, many of which

are base relations like po, co, and rf that do not have a defining equation. From the perspective

of the memory model, the base relations can be arbitrary. It is the program that will give them

proper semantics. For example, po will model the order in which program instructions are issued,

co will model the order in which store operations are committed to memory, and rf will model

the interaction between a load operation and the store operation it takes its value from. The base

relation [W] is the identity on all store operations, i.e., relates each store to itself.

The semantics [[fib(# )]]ARMv8 ormore generally [[p]]mm is defined in terms of executions, directed

and edge-labeled graphs (X, I) as the one in Figure 4 (ignore all highlighting for the moment). The
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x1: R1
6
(i)

x2: R1
6
(j)

x3: W1
6
(i)

x4: R2
6
(i)

x5: R2
6
(j)

x6: W2
6
(i)

x7: R1
11
(j)

x8: R1
11
(i)

x9: W1
11
(j)

x10: R2
11
(j)

x11: R2
11
(i)

x12: W2
11
(j)

Fig. 4. Execution of Fibonacci, # = 2.

finite set of so-called events X represents the program

commands that have been executed. In the figure, the six

events to the left represent two executions of the command

i = i+j. For each event, we add a subscript to denote the

line of code and a superscript to denote the loop iteration

that produced the event. The first two events read the cur-

rent values of 8 and 9 , the next write event installs the new

value of 8 , and then the process repeats. We use Xp for the

set of all events that are possible in the program. The labeled

edges are given by an interpretation I : R→ X×X→ {0, 1}
that assigns to each relation name from the finite set R an

actual relation over X. In Figure 4, the interpretation of the

program order I(po) consists of all edges between events x8
and x9 from the same thread where 8 < 9 . The figure only

shows I(po) ∩ I(loc), the restriction of the program order to events accessing the same location.

The interpretation of the coherence relation I(co) is given by the dashed edges, so the edge from x3
to x6 is labeled by po, loc, and co. The edge from x6 to x8 is read-from (I(rf)), all other read events

access an initial write that is not depicted. The edge from x11 to x3 is from-read I(fr), with fr defined
as rf−1; co. Indeed, x11 reads the initial value of 8 which gets overwritten by x3. The example does

not belong to [[ARMv8]] because the cycle in blue contradicts acyclic (po ∩ loc) ∪ ca ∪ rf.

2.3 SMT Encoding

We briefly explain the SMT encoding imm of the memory model semantics [[mm]] that we are about
to optimize. Two sets of variables are of particular interest. Boolean-valued so-called execution

variables execx indicate whether the event x ∈ Xp is present in the execution (belongs to the set X).
So-called relation variables nx,y express the value of relation I(n) at entry (x, y). Note that the
value of nx,y is only meaningful if both x and y are also executed. So I(n) (x, y) = 1 is not witnessed

by the truth of just nx,y but needs execx ∧ execy ∧ nx,y. Similarly, I(n) (x, y) = 0 is represented

by execx ∧ execy ∧ ¬nx,y. There is a degree of freedom of how to evaluate nx,y when at least one

of the events is missing in the execution, i.e., we have ¬execx ∨ ¬execy. We use this freedom to

additionally require the implication

nx,y → execx ∧ execy. (1)

We refer to Implication (1) as the key implication, because it leads to a particularly simple encoding

of the memory model as imm = idef ∧ iaxiom. The defining equations of derived relations are

encoded into idef as defined in Figure 5 (left). We emphasize that this straightforward translation

is only sound thanks to the key implication, which we add to the overall encoding as ikey . The

translation is not sound for all CAT-definable memory models, because it does not respect the least

fixed point semantics of recursive definitions. Interestingly, however, it is sound for all practically

knownmemory models. The reason is that (i) CAT axioms const (A ) are antitonic in their parameter r

(antitonic means they become harder to satisfy as the relation grows), a fact that was observed in

[Ponce de León et al. 2018], and (ii) in all memory models we know of r depends monotonically on

all recursively defined relations. The axioms are encoded as defined in ?? (right). Emptiness and

irreflexivity simply negate the relation variables. The encoding of the acyclicity axiom turns an

edge into an ordering requirement in integer difference logic [Gebser et al. 2014]. All quantifiers in

the encodings range over finite sets and will be compiled down into disjunctions and conjunctions.

The base relations are not encoded into imm and instead are part of the program encoding ip. For

an overview of the program encoding, we refer to the appendix.
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let c = a ∪ b : cx,y ↔ ax,y ∨ bx,y

let c = a ∩ b : cx,y ↔ ax,y ∧ bx,y

let c = a \ b : cx,y ↔ ax,y ∧ ¬bx,y

let c = a; b : cx,y ↔ ∃z ∈ Xp : ax,z ∧ bz,y

let c = a−1 : cx,y ↔ ay,x

empty(n) : ∀x, y ∈ Xp : ¬nx,y

irreflexive(n) : ∀x ∈ Xp : ¬nx,x

acyclic(n) : ∀x, y ∈ Xp : nx,y → clkn,x < clkn,y

Fig. 5. Encodings of derived relations and axioms as formulas idef resp. iaxiom.

2.4 SMT Optimizations

We observe that a certain form of static information is particularly helpful to optimize the above

encoding. This information are upper and lower bounds on the relations in the memory model. The

may-set may(n) associated to relation name n is an upper bound on the interpretation I(n) that
holds over all executions consistent with the memory model. Whenever events x and y are related

by n in a consistent execution, meaning I(n) (x, y) = 1, then we have (x, y) ∈ may(n). Dually, the
must-set must(n) gives a lower bound on the interpretation. If (x, y) ∈ must(n) and the two events
occur in a consistent execution, then we know they are related, I(n) (x, y) = 1. Importantly, the

must-set is defined relative to the execution of events, otherwise it would be constantly empty.

Assume the may and must-sets have already been computed. We explain how we use them to

optimize the SMT encoding.

Step 1: Substitution. The first step is to simplify the encoding by replacing relation variables with

known values. Suppose (x, y) ∉ may(n), meaning (x, y) are never related by n in any consistent

executions. Then all satisfying assignments of our encoding i must also satisfy nx,y ↔ false. This

allows us to simply replace nx,y by false in the encoding. Similarly, if we have (x, y) ∈ must(n),
then all satisfying assignments of i will also satisfy execx ∧ execy → nx,y. Combined with the key

implication, we get execx ∧ execy ↔ nx,y, which allows us to replace nx,y by execx ∧ execy in the

encoding. The substitutions may already make clauses true, which we then eliminate.

Step 2: Acyclicity. The second step is to optimize the encoding of acyclicity axioms. Compared to

emptiness and irreflexivity, acyclicity is a complex condition expressed best using integer difference

logic.1 The encoding of acyclic(n) introduces a clock variable clkn,x for every event x and adds to

the SMT encoding for every pair of events (x, y) the implication nx,y → clkn,x < clkn,y.
We propose an optimization that reduces the number of such implications in two ways. The

substitution performed in Step 1. already removed implications related to variables nx,y that are
known to be always false. We further exploit the may-set information to also remove implications

related to edges nx,y that can never occur in a cycle. Then we perform an optimization inspired by

transitive reductions: we do not add an implication, if the edge nx,y forms a shortcut for a full path

in relation n leading from x to y. However, edges may be missing in an execution. To be sound,

the other path has to exist whenever the shortcut nx,y exists. Fortunately, combining must-set

information with a standard control-flow analysis of the program gives us precisely the information

we need. We expect the control-flow information to be given as a set of implications of the form

x→ y or x→ ¬y, stating that whenever x is executed then so is y, resp. that x and y are mutually

exclusive. These implications will guarantee us the existence of the intermediary events while the

must-set will guarantee us that those events are connected to form the desired path.

1Also when expressed in pure SAT, acyclicity is a complex condition to solve [Gebser et al. 2014].
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We illustrate the optimization on the execution depicted in Figure 4, but emphasize that the static

information has to be valid for all executions in [[p]]mm. The first phase removes the dotted edges:

the may-set may(n) tells us that x1 resp. x7 will not have incoming edges, and therefore cannot be

part of a cycle. The second phase removes the dashed edges with the following argument. The edge

nx3,x6 forms a shortcut for nx3,x4 and nx4,x6 , drawn in black, with n = (po∩ loc) ∪ca∪ rf. The must-set

tells us that nx3,x4 ↔ execx3 ∧ execx4 and nx4,x6 ↔ execx4 ∧ execx6 , meaning the edges are present if

the events get executed. Moreover, since the events are executed unconditionally (execx8 ↔ true),

the edges are always present. We can thus drop the implication nx3,x6 → clkn,x3 < clkn,x6 , because
the other two edges already guarantee clkn,x3 < clkn,x4 < clkn,x6 .

Step 3: Thinning. The optimizations given so far modify the encoding of the memory model to a

formulakmm = kdef ∧kaxiom. They guarantee thatkdef is a conjunction of equivalences

nx,y ↔ def (n, x, y) false↔ def (n, x, y) execx ∧ execy ↔ def (n, x, y)

so that each nx,y appears at most once on a left-hand side. We refer to these equivalences as defining

constraints and denote the set of all defining constraints by C(kdef ).
Our third optimization is to thin out the set of defining constraints. The idea is to identify the

defining constraints that are active in the sense that they actually relate memory model axioms to

po(x3, x6 )

loc(x3, x6 )

co(x3, x6 )

fr(x3, x6 )

poloc(x3, x6 )

ca(x3, x6 )

rf(x3, x6 ) n(x3, x6 ) acyclic(n)

Fig. 6. Illustration of thinning on the running ex-
ample, poloc = po ∩ loc and n = poloc ∪ ca ∪ rf.

base relations. The remaining constraints are inactive

and can be removed from C(kdef ) without changing
the satisfiability status of the encoding. Consider Fig-

ure 6. The edges show dependencies between vari-

ables. The source of a black edge is contained in a

must-set, while the source of a blue edge has un-

known value. The must-set tells us that the value of

nx3,x6 is always equal to execx3 ∧execx6 . This equality
holds irrespective of the values of its dependencies rfx3,x6 and cax3,x6 . Since cax3,x6 no longer influences
the evaluation of the acyclicity axiom, we can drop its defining constraint cax3,x6 ↔ frx3,x6 ∨ cox3,x6
from the encoding. But now the relation variable frx3,x6 (which is derived as fr = rf−1; co) becomes

irrelevant and we can drop its defining constraint as well. Although we had no static information

about cax3,x6 and frx3,x6 , we could eliminate both of them from our encoding.

We propose a static analysis of the active constraints that processes kmm top down, starting

from the axioms. Say we have an axiom irreflexive(n). Then we only need to observe the diagonal

entries of n, and can drop all defining constraints nx,y ↔ def (n, x, y) where x ≠ y.

3 A NEW FORMULATION OF [[mm]]

We give the semantics of memory models a new formulation that is better suited for static analysis.

In the standard formulation from [Alglave 2010; Alglave et al. 2014b], the semantics of memory

models is update-based: it computes an interpretation of the derived relations from an interpretation

of the base relations. We propose instead a filter-based semantics [Cousot 2021]: it starts from an

interpretation of all relations and filters out undesirable interpretations. We show that the original

update semantics and the new filter semantics coincide, and so the filter semantics is indeed a

reformulation of the original definition.

Before we turn to the details, we explain the benefits of the filter semantics over the update

semantics for static analysis. Memory models have a bidirectional information flow: the base

relations propagate information to the axioms, and the axioms constrain the base relations. The

update semantics only captures the first flow. Being undirected in nature, filters immediately reflect

the bidirectional information flow. This leads to more precise abstractions.
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Filters will also act as a generic interface to incorporate external information, in particular

program information, into our semantics. Indeed, we will define the semantics parametric in a set of

additional filters F . This allows us to capture not only the update semantics [[mm]]up but also the

program semantics under the memory model [[p]]mm. We denote the parameterized filter semantics

by [[mm]]F and write [[mm]] for [[mm]]∅ resp. [[mm]]f for [[mm]] {f } . The following theorem will

justify the definition of the filter semantics given below.

Theorem 3.1 (Soundness and completeness of the filter semantics). [[mm]]up = [[mm]]

and [[p]]mm = [[mm]]fp , where fp (E) = E ∩ [[p]].

3.1 Update Semantics

The update semantics of a memory model mm is defined as the set of consistent executions. An

execution EB = (X, IB) has a set X of events and an interpretation IB : B → X × X → {0, 1} of
all base relation names in terms of actual binary relations over the events X. The memory model

determines consistency of the execution in two steps. First, it extends the interpretation IB to a

complete interpretation I : B ∪ D → X × X → {0, 1} over also the derived relation names. The

idea is to evaluate the defining equations, for recursive definitions this involves fixed points. The

details can be found in the appendix. As the extension from EB to E is unique, we use both notions

interchangeably. Then the memory model checks whether all axioms const (r) are satisfied by E. If
so, the execution is consistent. The update semantics is [[mm]]up = {E | E is consistent}.

We introduce helpful notation for sets of executions and relations. Let X be the set of all events

that may occur in any program. We denote by CExecX the set of all executions over domain X ⊆ X
and by CExec =

⋃

X⊆X CExecX the set of all executions. We also use CRelX to refer to the set of

binary relations X × X→ {0, 1} over domain X and CRel =
⋃

X⊆X CRelX to refer to binary relations

over all possible domains.

3.2 Filter Semantics

The idea behind our new semantics is that axioms and defining equations in a memory model

can be seen as semantic objects of the same type: filters. A filter on P(CExec) is a function that

removes undesirable executions from a given set of executions. While it should be clear that axioms

yield filters, this may need a word for defining equations let d := r . The update semantics takes

the defining equation as a description of how to compute d from r . The filter semantics takes the

defining equation for what it really is, namely a requirement of equality. Given a set of executions E,
the filter [[let d := r]] removes the executions where the interpretation of relation d is different

from the interpretation of the relation expression r . To be able to reuse it in the abstract setting, we

give the definition of filters for general lattices.

Definition 3.2. A filter on a lattice (!, ⊑) is a function f : ! → ! that is reductive, f (;) ⊑ ; , and
monotonic, ; ⊑< implies f (;) ⊑ f (<), for all ;,< ∈ !.

A filter is thus a lower closure operator [Cousot 2021, Chapter IV, Section 11.7] without the

requirement of idempotence. An important consequence of the definition for our new semantics is

that we can characterize greatest common fixed points.

Lemma 3.3 (Compositionality). Let 5 and6 be filters on a complete lattice (!, ⊑). Then gfp.(5 ⊓6)
is the largest element that is both a fixed point of 5 and of 6.

The lemma is key to the compositionality of the filter semantics mentioned in the introduction. It

allows us to define the semantics parametric in a set of filters and generalize it to new base relations

by simply adding the corresponding filters.
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[[mm]]F = gfp.(
¤⋂

f ∈F

f ¤∩
¤⋂

c ∈mm

[[c ]] ) : P(CExec)

[[const (r ) ]] (E) = {E ∈ E | [[const ]] ( [[r ]] (E) ) } : P(CExec)

[[let d := r ]] (E) = {E ∈ E | [[d ]] (E) = [[r ]] (E) } : P(CExec)

[[let rec ®d := ®r ]] (E) = {E ∈ E | [[®d ]] (E) = lfp.[[Θ(®d, ®r ) ]] (E) } : P(CExec)

[[Θ(®d, ®r ) ]] (E) = _®D. ®[[r ]] (E[®d ← ®D ] ) : CRel: → CRel:

[[r1 ⊕ r2 ]] (E) = [[⊕]] ( [[r1 ]] (E), [[r2 ]] (E) ) : CRel

[[n]] (E) = E(n) : CRel

Fig. 7. Concrete filter semantics.

The filter semantics is given in Figure 7. It is the largest set of executions that satisfies the

filters [[c]] for all axioms, equations, and systems of equations in the memory model, c ∈ mm.

By satisfying a filter, we mean the filter no longer reduces the set of executions: the set is a

fixed point of the filter. Using Lemma 3.3, and disregarding the parameter F , the semantics is the

greatest common fixed point of the meet over the filters [[c]]. We already discussed the filters

[[const (r)]] and [[let d := r]] for axioms resp. defining equations. Consider a system of equations

let rec d1 := A1 and . . . and d: := A: . Each relation expression A1 to A: may make use of all

the derived relations d1 to d: , meaning the system is recursive. The interpretation of the derived

relations sought is the least solution to the system of equations. This least solution can be expressed

as a least fixed point. To this end, we understand each relation expression A from A1 to A: as a function

of type CRel: → CRel. The input value of type CRel: is the interpretation of the relation names d1
to d: . Inserting these relations into the expression A yields a return value of type CRel. We adapt this

view for all expressions A1 to A: and obtain a function of type CRel: → CRel: . In the definition of

the semantics in Figure 7, this function is written as [[Θ(®d, ®r)]] (E). The purpose of the execution E is

to interpret the remaining relations. It can be shown that the least fixed point lfp.[[Θ(®d, ®r)]] (E) is the

least solution to the system of equations let rec ®d := ®A . The filter [[let rec ®d := ®A ]] then checks that
the interpretation of the derived relations d1 to d: in E corresponds to the interpretation computed

with the least fixed point. We remark that the fixed point computation is crucial to guarantee the

equivalence of the filter with the update semantics. The semantics of relation expressions [[r]] (E) is
as expected. We have omitted unary operations, which are defined like their binary counterparts.

Lemma 3.4. The functions [[c]] defined in Figure 7 are filters.

We elaborate on the purpose of parameter F highlighted in Figure 7. In the context of bounded

model checking, the semantics of interest is [[p]]mm = [[p]] ∩ [[mm]], i.e., the subset of the memory

model semantics that also adheres to the program semantics. We can view the program p as a filter

fp (E) = E ∩ [[p]] that removes from a set of executions the ones that do not belong to the program.

By adding this filter to our semantics, we obtain the semantics of interest [[mm]]fp = [[p]]mm. There

are further applications, notably in conditional model checking [Beyer et al. 2012].

4 A STATIC ANALYSIS FOR [[mm]]F

We devise a static analysis to compute the previously mentioned may and must-sets. Our approach

is to construct an abstract filter semantics [[mm]]F# from [[mm]]F . The abstract semantics will take

into account F by assuming to be given an abstract filter f # for each f ∈ F . Abstract filters are
thus the standardized format in which we import information from external program analyses. The
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f #p

[[acyclic(n) ]]#

po

loc

co

rf

poloc

fr

ca n

[[let poloc := po ∩ loc]]#

[[let fr := rf−1; co]]#
[[let ca := co ∪ fr]]#

[[let n := poloc ∪ ca ∪ rf]]#

Fig. 8. Propagation of analysis information through filters for relation n and its dependencies.

sets of control-flow implications x→ y and x→ ¬y mentioned earlier are particularly simple (but

useful) abstract filters. The given abstract filters may also constrain the may- and must-sets. In

particular, having at least an abstract program filter f #p is important, because it is the program that

gives semantics to the base relations: read-from (rf) has to be functional, the program order (po)
relates same-thread events, the coherence order (co) only relates same-address writes, and no base

relation ever relates events of mutually exclusive program branches. We give a brief idea of how to

construct an abstract program filter from static analysis information about the program. Whenever

we can deduce that (x, y) do not alias, then we know that these events can never be related by

read-from or coherence, (x, y) ∉ may(rf) and (x, y) ∉ may(co). Similarly, if a control-flow analysis

tells us that (x, y) are mutually exclusive, then (x, y) ∉ may(n) for all relations n ∈ R.
Figure 8 gives an overview of how the (abstract) program filter, the equation filters, and the axiom

filters interact on an example fragment of the ARMv8 memory model. First, the program filter f #p
infers information about the base relations. Then the equation filters propagate this information

upwards towards relation n. Now the axiom filter [[acyclic(n)]]# uses it to derive more information

about n that is then propagated downwards again using the equation filters. If during the downward

propagation new information reaches the base relations, the program filter f #p may be applied again

and the propagation process repeats until a fixed point is reached. Note that while we explained an

alternation of upward and downward propagation, filters are bidirectional and any iteration strategy

would reach the same fixed point. Before we proceed to the details, we illustrate a computation of

the abstract semantics on the Fibonacci program.

We start from an abstract execution A = ⊤ (the exact shape of A does not matter for now) saying

that all must-sets are empty (trivial lower bounds) and all may-sets are full (trivial upper bounds).

First, we apply the abstract program filter f #p . The resulting abstract execution f #p (A) approximates

all base relations as depicted in the first graph (top-left) of Figure 9. For rf and co, we get the

following: the may-sets contain only write-read resp. write-write event pairs that access the same

location (the alias information for Fibonacci is simple). The must-sets of both relations are empty.

The other two base relations po and loc are approximated precisely (the may andmust-sets coincide).

While this is always the case for the program order (because it is fixed by the syntax), the reason

this also holds for the same-location relation loc is because we have precise alias information for

Fibonacci (there are no dynamic memory accesses). On our example graphs, the may and must-set

of the loc relation is the complete graph, so we omit the relation to simplify the figure. We propagate

the above information upwards by applying the abstract equation filters [[let poloc := po ∩ loc]]#,
[[let fr := rf−1; co]]#, [[let ca := co ∪ fr]]#, and [[let n := poloc ∪ ca ∪ rf]]#. This results in the

abstract information depicted in the top-right graph of Figure 9. The backward may-edges in

the bottom half of the graph stem from the from-read relation fr (propagated over ca), while the
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Fig. 9. Static analysis on thread_i of Fibonacci with N=3. Events on variable 9 are omi�ed. Dashed edges
represent may-sets and thick edges represent must-sets. Transitive must-edges in po and n are omi�ed.

remaining edges stem directly from the base relations depicted in the first graph. The reader may

wonder why the forward edges of co and rf are absent in this graph. The reason is that those edges

are already transitively implied by the must-edges contributed by po (via poloc) and so we omit

them. Now the abstract acyclicity filter [[acyclic(n)]]# will deduce that the backward may-edges

opposing the forwardmust-edges cannot exist, for otherwise there would be a cycle: (y, x) ∉ may(n)
for all backward may-edges. This results in the third graph (middle-right) of Figure 9. By applying

the four equation filters again, we propagate the reduced may-sets downwards to the base relations,

resulting in the fourth graph (middle-left) where only forward edges remain. Interestingly, the

program filter f #p can use this to deduce further information: co is a total order over store events to

the same address, so if the backward co edges are impossible, then we must have the forward co
edges as depicted in the fifth graph (bottom-left). With this, we can deduce from the abstract filter

[[let fr := rf−1; co]]# that rf(x3, x7) is impossible; if that edge was ever present, we could compose

its inverse with the must-edge co(x3, x6) to obtain the disallowed from-read edge fr(x7, x6) (this
edge was removed from the may-set of fr in the first downward propagation). Actually, we need

control-flow information to justify this reasoning: it would not hold if it was possible to execute

x3 and x7 without x6. However, a simple control-flow analysis will show that whenever x7 gets
executed then so does x6.

On a high-level, we (automatically) computed the following information from the memory model:

(i) a load cannot read from a store that is later in the same thread, (ii) stores to the same location

are committed into memory in the order they appear in the program syntax, and (iii) a load cannot

observe a same-thread store that was already overwritten within the thread. Notice that none of

this information is derivable by analyzing [[mm]] or [[p]] alone.

4.1 Domains

Recall that the concrete semantics of memory models is defined over concrete executions (CExec)
that define concrete relations (CRel). These concrete relations consist of both a domain (X ⊆ X)
and a valuation (X × X → {0, 1}). This strict distinction between the domain and the valuation

will be helpful for defining our static analysis. Our analysis is based on a set of abstract domains

that mimic the structure of the concrete domains. These domains are the abstract executions AExec,
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abstract relations ARel, abstract control-flow ACF, and abstract valuations AVal. They are as follows:

AExec = R→ ARel ACF ⊆ P({x→ y, x→ ¬y | x, y ∈ X})

ARel = ACF × AVal AVal ⊆ X × X→ P({0, 1}) .

We explain the abstract domains and their connection to the concrete ones via a set of Galois

connections [Cousot 2021, Chapter IV, Section 11]:

(P(CExec), ⊆) −−−−→←−−−−U×

W×
(R→ P(CRel), ¤⊆) −−−−−→←−−−−−

¤Urel

¤Wrel
(R→ ARel, ¤⊑) = (AExec, ¤⊑)

(P(CRel), ⊆) −−−−−→←−−−−−
Urel

Wrel
(ARel, ⊑) = (ACF × AVal, ⊑cf × ⊑val)

(P(CRel), ⊆) −−−−→←−−−−Ucf

Wcf
(ACF, ⊑cf ) (P(CRel), ⊆) −−−−−→←−−−−−

Uval

Wval
(AVal, ⊑val) .

An abstract execution takes the shape A : R → ARel. Each relation name n ∈ R is mapped to

an abstract relation A(n) : ARel = ACF × AVal. The abstract relation represents a set of concrete

relations R ∈ P(CRel) by capturing their domains in an abstract domain D ∈ ACF and their

valuations in an abstract valuation 0 ∈ AVal ⊆ X×X→ P({0, 1}). We understand D as control-flow

information and represent it as a set of implications D ∈ ACF ⊆ P({x → (¬)y | x, y ∈ X}).
Implications x→ y mean that whenever x is in the domain of a concrete relation r ∈ R, then so

is y. Implications x→ ¬y mean that the events are mutually exclusive: there is no relation r ∈ R
that has both events in its domain. We assume that all sets of control-flow implications in ACF are

closed in the following sense: (i) if x→ y and y→ (¬)z are contained, then so is x→ (¬)z, and
(ii) if x→ ¬y is contained, then so is its contrapositive y→ ¬x. We equip ACF with the superset

ordering ⊑cf = ⊇ so that smaller (more precise) elements contain more implications. The join ⊔cf
is intersection, the meet ⊓cf is union followed by closing the resulting set of implications as just

defined. The abstraction function Ucf (R) = {x→ (¬)y | ∀r ∈ R : x ∈ dom(r) ⇒ (¬)y ∈ dom(r)}
collects the implications that hold over all relations in the given set.

For a set of concrete relations R, the abstract valuation 0 = Uval (R) just collects all concrete
valuations into one: 0(x, y) = {r(x, y) | r ∈ R∧ x, y ∈ dom(r)}. For example, we have 0(x, y) = {1}
if all concrete relations r ∈ R that have x, y in their domain satisfy r(x, y) = 1, and there exists

at least one relation with both events in its domain. The value 0(x, y) = ∅ means that there is

no concrete relation defined over (x, y). Note that in this case we can derive the abstract control-

flow information x→ ¬y from the abstract valuation. We will later define a reduction operator

on ARel = ACF × AVal to exchange this type of information between the abstract domains. The

abstract valuations obtained by the abstraction Uval inherit domain-consistency properties from the

concrete relations. For example, if 0(x, y) = ∅ then we must also have 0(y, x) = ∅, because every
concrete relation that is undefined at (x, y) is also undefined at (y, x). We restrict our domain of

abstract valuations and define AVal = Uval (P(CRel)) ⊆ X × X → P({0, 1}). We equip AVal with
the pointwise lifting ¤⊆ of the subset ordering on P({0, 1}). For the join and meet, we also use the

pointwise liftings ⊔val = ¤∪ and ⊓val = ¤∩.
We combine the control-flow abstraction Ucf and the valuation abstraction Uval into a relation

abstraction Urel with Urel (R) = (Ucf (R), Uval (R)). The concretization is Wrel (a) = Wcf (a) ∩ Wval (a).
The ordering on ARel is defined componentwise, ⊑ = ⊑cf × ⊑val . For an abstract relation a = (D, 0),
we often write a(x, y) to mean 0(x, y).

It remains to explain the abstraction Uexec from sets of concrete executions P(CExec) to abstract

executions AExec. The abstraction Uexec = ¤Urel ◦ U× is performed in two steps. First, a cartesian

abstraction [Cousot 2021, Chapter IX] pushes the powerset over executions to the concrete relations.

It maps a set of concrete executions E to a single function U× (E) that, given a relation name,

collects the interpretation over all executions in the set: U× (E) = _r.{I(r) | E = (X, I) ∈ E}. On
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R→ P(CRel), we use the pointwise lifting ¤⊆ of the subset ordering on P(CRel). The abstraction
drops the information which concrete relations occur together in an execution. Assume we have the

relation names {n,m} and executions E = {E1, E2} with E8 = (X8 , I8 ). The abstraction is the function

U× (E) = _r ∈ {n,m}.{I1 (r), I2 (r)}. The concretization of this function is the set of executions that,

besides E, also contains E3 = (X3, I3) with I3 (n) = I1 (n) and I3 (m) = I2 (m), n is interpreted as in E1
and m as in E2. The second abstraction ¤Urel is the pointwise lifting of Urel as we defined before.

The reader may be wondering how the abstract executions are connected to the may- and

must-sets we have talked about initially. The may- and must-sets are extracted as follows:

may(n) = {(x, y) | 1 ∈ A(n) (x, y)} must(n) = {(x, y) | A(n) (x, y) = {1}} .

We remark that, besides themay- andmust-sets, our abstract domain explicitly contains control-flow

information. This is crucial to compute precise must-sets, as we will see later.

Reduced domains. The domains ARel and AExec contain redundant representations, that is,

abstract elements that represent the same set of concrete elements. In both cases, the redundancy is

due to inconsistent domain information. Consider an abstract relation a = (D, 0) with x→ ¬y ∈ D
and 0(x, y) = {0, 1}. The abstract valuation says that the represented set of concrete relations

contains some relations that evaluate to 0 and some that evaluate to 1 at (x, y). However, the
control-flow implication x → ¬y says that no relation is defined at (x, y). As a consequence,

0[(x, y) ← ∅] is a more precise representation of the same set of concrete relations. We recover this

information with a reduction operator drel : ARel→ ARel. It will be helpful to define this reduction
in terms of the two functions Vval = (Uval ◦Wcf ) : ACF→ AVal and Vcf = (Ucf ◦Wval) : AVal→ ACF.
They transform an element of one abstract domain to an element of the other as follows:

Vval (D) (x, y) =

{

∅, if x→ ¬y ∈ D

{0, 1}, else
Vcf (0) = {x→ ¬y | 0(x, y) = ∅}.

We now set drel (D, 0) = (D⊓cf Vcf (0), 0 ⊓val Vval (D)). The function drel is monotonic and reductive

by construction, and it can be shown to be idempotent. Importantly, it is sound.

Lemma 4.1 (Soundness of the reduction on abstract relations). Wrel = Wrel ◦ drel .

Now we address the redundancies in AExec. Concrete executions have the shape E = (X, I)
where I : R→ X × X→ {0, 1}, meaning all relation names are interpreted over the same domain.

In abstract executions, the domains of abstract relations may be different. We define a reduction

dexec : AExec → AExec that collects the domains of all abstract relations, intersects them (⊓cf ),
and then reduces all abstract relations to that common domain. Formally, we have the following

definition: dexec (A) (n) = let DA =
.

m∈Rc1 (A(m)) in drel (A(n) ⊓ (DA,⊤E0; )) .

Lemma 4.2 (Soundness of the reduction on abstract executions). Wexec = Wexec ◦ dexec .

To simplify the presentation of our static analysis, we will assume that the reduction operators

are applied throughout the computation, so that we only work over reduced elements.

4.2 Static Analysis

Our goal is to compute static information about the filter semantics [[mm]]F . To this end, we

define an abstract filter semantics [[mm]]F# that soundly approximates the concrete semantics,

Uexec ( [[mm]]F) ⊆ [[mm]]F#, and can be computed efficiently. The definition of the abstract semantics

mimics the definition of the concrete semantics: it has abstract filters, abstract relation expressions,

and abstract operators/predicates, corresponding to [[c]], [[r]], and [[⊕]]/[[const]], respectively. In
the concrete semantics, filters are built from relation expressions, and relation expressions are built
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from operators. We retain this compositionality in the abstract semantics, but the abstract operators

come in two flavors: a forward version and a backward version. These versions can be understood

as propagating information from the inputs of the operator to its output (forwards), and from its

output to its inputs (backwards). We require both versions to construct our abstract filters which

simultaneously propagate information from base relations to derived relations (forwards) and from

derived relations to base relations (backwards).

Abstract Filter Semantics. We explain the approximation of filters. The idea common to all

definitions is to first evaluate the forward approximations of some relation expressions, restrict the

results according to the filter, and then use the restricted results in the backward approximations of

those expressions. Consider the approximation [[const (r)]]# (A) of the axiom filter [[const (r)]] (E).
We first compute the forward semantics [[r]]#� (A) of the relation expression and apply the abstract

constraint [[const]]# ( [[r]]#� (A)) on the result. This computation is very similar to the concrete

filtering semantics, except that we evaluate abstract forward operators [[⊕]]#� (as part of [[r]]#� ) and

an abstract version [[const]]# of the constraint. We defer the definition of both for the moment.

The result c of the abstract constraint is then given as an additional parameter to the backward

computation [[r]]#� (A, c). The backward computation is best explained in the concrete. Let E be

the concretization of A and R the concretization of 2 . The backward computation determines the

largest set of executions E′ ⊆ E so that when evaluating expression r we obtain a relation in R.
This has the effect of determining from the result R of the computation information about the

input E′. With this in mind, the backward semantics of a relation expression yields an abstract

execution, not an abstract relation.

For the filters resulting from defining equations, we approximate the desired equality by a meet.

For recursive systems of defining equations, we approximate the least fixed point in two steps. The

reason is that a least fixed point comes with two requirements: the value should be a fixed point

and it should be the least one. For the first requirement, we use the meet ¤
.
[[let d8 := r8 ]]

# over

the approximations of the single equations. For the second requirement, we iterate the forward

semantics [[Θ(®d, ®r)]]#� of the recursive system, starting from a suitable element in the lattice. We do

not know of a backward computation that would guarantee minimality of the fixed point. Also

note that, forwards, we do not simply compute the least fixed point. The reason is that the fixed

point computations in the concrete semantics happen over relations X × X → {0, 1} where the
set {0, 1} is ordered logically: 0 < 1 (false < true). The ordering ⊑ on abstract relations does not

reflect this logical ordering, but instead the subset ordering of P(CRel). The operator lfp# solves the
problem by forming a Kleene chain with the forward abstract union [[∪]]#� instead of the abstract

join. The chain starts from an abstract execution in which all relation names map to {0} (reflecting
the least element in logical order) rather than ∅ (reflecting the least element in subset order). The

construction of the abstract filter semantics is given in Figure 10. We define the missing operators

below. Under the standard soundness assumption for the abstract filters that are given as parameters,

Uexec ◦ f ◦ Wexec ¤⊑ f # for all f ∈ F , our abstract semantics is sound.

Theorem 4.3 (Soundness). Uexec ( [[mm]]F) ⊆ [[mm]]F#.

4.3 Abstract Constraints and Operators

We define the forward and backward semantics of constraints and operators. Recall that we always

apply the reductions drel and dexec before evaluating filters and operators. This allows us to assume

that whenever we compute [[⊕]]# (a, b), both abstract relations have a common domainD ∈ ACF and
the result will also have that domain. It thus remaims to define the abstract valuation of the result.

We define abstract valuations using sets of implications of the form premise( ®G) ⇒ conclusion( ®G).
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[[mm]]F# = gfp.(
¤/

f ∈F

f # ¤⊓
¤/

c ∈mm

[[c ]]# ) : AExec

[[const (r ) ]]# (A) = let2 = [[const ]]# ( [[r ]]#� (A) ) in [[r ]]
#
� (A, 2 ) : AExec

[[let d := r ]]# (A) = let2 = A(d ) ⊓ [[r ]]#� (A) in A[d ← 2 ] ¤⊓ [[r ]]#� (A, 2 ) : AExec

[[let rec ®d := ®r ]]# (A) = let ®2 = A(®d ) ¤⊓ lfp# .[[Θ(®d, ®r ) ]]#� (A)

in A[®d ← ®2 ] ¤⊓
¤/
[[let d8 := r8 ]]

# (A) : AExec

[[Θ(®d, ®r ) ]]#� (A) = _ ®0.[[®r ]]#� (A[
®d ← ®0] ) : ARel: → ARel:

[[r1 ⊕ r2 ]]
#
� (A) = [[⊕]]#� ( [[r1 ]]

#
� (A), [[r2 ]]

#
� (A) ) : ARel

[[n]]#� (A) = A(n) : ARel

[[r1 ⊕ r2 ]]
#
� (A, 0) = let ⟨1, 2 ⟩ = [[⊕]]#� ( [[r1 ]]

#
� (A), [[r2 ]]

#
� (A), 0)

in [[r1 ]]
#
� (A, 1 ) ¤⊓ [[r2 ]]

#
� (A, 2 ) : AExec

[[n]]#� (A, 0) = A[n← A(n) ⊓ 0] : AExec

Fig. 10. Abstract filter semantics.

These implications refer to valuations defined in the context of the implication plus a valuation •
which is meant to be defined. If the premise is simply true, we omit it. A valuation r satisfies such an

implication if the implication holds with • replaced by r for all assignments ®G ↦→ ®x of the variables
to events from X. For a set of implications � , we write ⌈�⌉ for the greatest relation with domain D
that satisfies all implications in � . To further ease the notation, we write x→ y for x→ y ∈ D. The
abstract emptiness and irreflexivity constraints are defined by

[[empty]]# (a) = a ⊓ ⌈1 ∉ •(x, y)⌉ [[irreflexive]]# (a) = a ⊓ ⌈1 ∉ •(x, x)⌉ .

The abstract acyclicity is [[acyclic]]# (a) = a ⊓ ⌈80, 81, . . . , 8 |X |⌉ where implication 8: is given by

0 ∉ a(x0, x1) ∧ · · · ∧ 0 ∉ a(x:−1, x: ) ∧ (∀0 < 8 < : : x0 → x8 ∨ x: → x8 ) ⇒ 1 ∉ •(x: , x0) .

Note that we require control-flow information to evaluate the abstract acyclicity constraint. The
reason is that to certainly exclude an edge, we need to argue that it is part of a cycle � whenever it
occurs. To guarantee the existence of � , we need to argue about both the existence of its nodes
(using control-flow information) and its edges (using must-sets). To understand the implication 8: ,
assume that the premise was true but the conclusion was not for a concrete relation r ∈ Wrel (a).
Then there are executed events x0 and x: with r(x: , x0) = 1. By the control-flow implications
in the premise, all intermediate events x8 are also executed, so relation r must be defined on all
edges (x8 , x8+1), taking either value 0 or 1. However, the premise excludes value 0, so we must
have r(x8 , x8+1) = 1 for all 0 ≤ 8 < : . Together with r(x: , x0) = 1 this would mean that r is cyclic,
contradicting the acyclicity constraint. The abstract composition operations are defined similarly:

[[; ]]#� (a, b) = ⌈81, 82 ⌉

81 = (∀z ∈ X : 1 ∉ a(x, z) ∨ 1 ∉ b(z, y) ) ⇒ 1 ∉ •(x, y)

82 = (∃z ∈ X : 0 ∉ a(x, z) ∧ 0 ∉ b(z, y) ∧ (x→ z ∨ y→ z) ) ⇒ 0 ∉ •(x, y)

[[; ]]#� (a, b, c) = ⟨a ⊓ ⌈ 94, 93 ⌉, b ⊓ ⌈ 92, 91 ⌉⟩

91 = 0 ∉ c(x, y) ∧ (z→ x) ∧ (∀z′ ≠ z : 1 ∉ a(x, z′ ) ∨ 1 ∉ b(z′, y) ) ⇒ 0 ∉ •(z, y)

92 = 1 ∉ c(x, y) ∧ (z→ x) ∧ 0 ∉ a(x, z) ⇒ 1 ∉ •(z, y)

93 = 0 ∉ c(x, y) ∧ (z→ y) ∧ (∀z′ ≠ z : 1 ∉ a(x, z′ ) ∨ 1 ∉ b(z′, y) ) ⇒ 0 ∉ •(x, z)

94 = 1 ∉ c(x, y) ∧ (z→ y) ∧ 0 ∉ b(x, z) ⇒ 1 ∉ •(x, z) .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 279. Publication date: October 2023.



279:20 Thomas Haas, René Maseli, Roland Meyer, and Hernán Ponce de León

Notice that the composition operators, like the acyclicity operator, rely on control-flow information

to guarantee the existence of an intermediary event z for the relation composition. The definitions

of the remaining operators can be found in the appendix.

5 OPTIMIZING THE SMT ENCODING WITH STATIC INFORMATION

We optimize the SMT encoding i of the program semantics [[p]]mm based on the ideas explained

in Section 2. We assume that the static analysis from Section 4 has been performed and that we now

have an abstract domain element D as well as may and must-sets for all relations of the memory

model. We refer to this information simply as static information and denote it by ( . The static

information can be translated into a logical formula i( by conjoining the following set of formulas:

nx,y ↔ false if (x, y) ∉ may(n), nx,y ↔ execx ∧ execy if (x, y) ∈ must(n), and execx → (¬)execy if
x→ (¬)y ∈ D. The soundness of our analysis implies thati = ip∧imm∧ikey is logically equivalent
to i ∧ i( , denoted by i ≡ i ∧ i( . This equivalence allows us to perform a direct simplification

by substitution: if we have nx,y ↔ false (execx ∧ execy), then we can replace all occurrences of

the left-hand side by the right-hand side. These substitution may make some clauses trivially

true, for example, consider let c = a ∩ b and assume that (x, y) ∉ may(a) and (x, y) ∉ may(c).
Then our encoding contains a subformula cx,y ↔ ax,y ∧ bx,y which, after substitution, becomes

false ↔ false ∧ bx,y ≡ false ↔ false ≡ true. We remark that in practice, we do not perform the

substitutions explicitly and instead generate the formula directly in simplified form.

Before addressing the more involved optimizations presented in Section 2, we define the helpful

notion of relativized logical equivalence. We write i ≡( k to mean i ∧ i( ≡ k ∧ i( , that is,
both formulas are logically equivalent modulo the given static information. Similarly, we write

i ≡(,key k when we also want to take the key implication ikey into account. We also use this

relativized notation for logical implications i ⇒( k , meaning that i ∧ i( ⇒ k holds.

5.1 Optimizing the Acyclicity Encoding

Among the three types of axioms in a memory model, acyclicity is the most expensive to handle for

the SMT solver. We now optimize the encoding of an acyclic(n) axiom based on the given static

information. We make precise what it means to optimize the acyclicity encoding. We associate with

relation n the edge-labeled, complete graph� = (X,X × X, _(x, y).nx,y). The nodes are all events,
we have all possible edges, and each edge (x, y) is labeled by the Boolean variable nx,y. When given

an assignment f of the variables nx,y, we obtain the subgraph f (�) consisting of only those edges

where f (nx,y) = true. Encoding the acyclicity of n then amounts to finding a formula i� so that for

all assignments f we have

f |= i� iff f (�) is acyclic.

The satisfying assignments of the formula are precisely the ones that make the graph acyclic.

There are different ways to construct i� . We implemented two options. The first introduces

integer-valued clock variables clkn,x for each event x and requires a strict ordering whenever two

events are linked by an edge: ∀x, y ∈ X : nx,y → clkn,x < clkn,y. We also have a more subtle Boolean

encoding based on vertex elimination [Rankooh and Rintanen 2022]. Importantly, the optimization

we give in the following is based on the graph representation and works for any encoding.

Our optimization determines a smaller graph � that is equivalent to � as far as acyclicity is

concerned and when taking into account both the static information ( and the key implication (1).

We will guarantee that i� ≡(,key i� , the acyclicity formulas of both graphs are logically equivalent

when conjoined with the static information i( and the key implication ikey . We construct � as the

result of a sequence �,�1,�2, � of graphs. While both �1 and �2 will be decreasing subgraphs of

� , the final graph � may in general not be.
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Fig. 11. Graphs�1 (le�),�2 (middle), and � (right) for relation n = (po∩ loc) ∪ ca∪ rf and axiom acyclic(n).
Static edges are depicted in black. The graph � is the complete graph and is omi�ed.

If we apply this three-step construction to the axiom acyclic((po∩ loc) ∪ ca∪ rf) of our running
example, we get the three graphs �1, �2, and � as depicted in Figure 11.

Step 1: Restriction by static information. We remove from� the edges that are statically known

to be absent. Let �1 be the restriction of � to the edges (x, y) ∈ may(n).

Step 2: Restriction to strongly connected components (SCCs). An edge can only be part of a cycle

if it belongs to an SCC. We compute all SCCs in �1 using Tarjan’s algorithm [Tarjan 1971] and

remove all edges that are not part of an SCC. Let the result be �2.

Step 3: Transitive reduction. In the last step, the idea is to remove from �2 edges (x, y) that are
shortcuts in the following sense: whenever f (�2) contains the edge, then it also contains a path

from x to y. Removing shortcuts is sound indeed: whenever f (�2) has a cycle containing the

edge (x, y), then it also has a cycle that replaces the edge by the path.

To compute the shortcut edges (x, y), note that the requirement of having a path from x to y
resembles the condition that the edge is transitively implied, meaning it is part of a transitive

closure formed from other edges. We thus intend to retain what resembles a transitive reduction, a

set of edges the transitive closure of which contains all edges. However, the paths we are looking

for have to satisfy the extra condition that they exist whenever the edge exists. Consider a graph

over three events x, y, z with edges (x, y), (y, z), and (x, z). Naively, one would say that (x, y); (y, z)
is a long path for (x, z), however, for this to hold true we also have to have the following implication

between their edge-labels: nx,z ⇒ nx,y ∧ ny,z. In general, we cannot establish this implication

between arbitrary edges because we lack the relational information needed between the different

relation variables. However, we can use must-sets as well as our key implication to relate the

relation variables to execution variables. Then we exploit the relational control-flow implications

to show the necessary implications between those. In the above example, assume that we know

(x, y), (y, z) ∈ must(n) and x→ y. Then we can establish the necessary implication as follows:

nx,z ⇒key execx ∧ execz ⇒( execx ∧ execy ∧ execz ⇒( nx,y ∧ ny,z .

We can incorporate this extra requirement into a stronger definition of edge composition ;( so

that we indeed have (x, y) ;( (y, z) = (x, z) only if the necessary implication holds. With respect

to this new composition, the notions of transitive closure and transitive reduction apply without

modification. In order to define these notions, we need to allow for a slightly more generalized

edge-labeling _ that labels an edge with either a relation variable nx,y or with execx ∧ execy. Call
an edge (x, z) (-static if it is labeled by execx ∧ execz or if this labeling can be obtained from ( , i.e.,
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(x, z) ∈ must(n). We define the (-static composition ;( of (-static edges as the partial operation

(x, z) ;( (z, y) =

{

(x, y) if x→ z ∈ ( or y→ z ∈ (

undef otherwise.

We can only compose (-static edges (x, z) and (z, y), if the result (x, y) can be guaranteed to be

again (-static. As it turns out. this definition closely resembles the abstract forward semantics

[[; ]]#� we have defined in Section 4.3. Given a set � of (-static edges, we use �+( =
⋃

8≥1 �
8 with

�1 = � and �8+1 = � ∪ �8 ;( �
8 for 8 ≥ 1 to denote the transitive closure w.r.t. (-static composition.

We extend this notion to graphs  = (X, �, _) with extended labeling in the following way: if

�( ⊆ � denotes the subset of (-static edges, then we define the (-static transitive closure of  to be

 +( = (X, (� \ �( ) ∪ �
+(
(
, _+( ) where _+( labels (x, y) ∈ �+(

(
with execx ∧ execy and matches _ on

all other edges. The graph  and its transitive closure  +( are related by the following lemma.

Lemma 5.1. For any given ( , we have i ≡(,key i +( .

The lemma allows us to replace �2 by a different graph � as long as both graphs have the same

transitive closure, i.e., we have �+(
2

= �+( . Notice that � does not have to be a subgraph of �2 for

the lemma to apply, so we are not only allowed to delete edges from �2 but we can also introduce

new ones. Ideally, we want � to be of minimal size, in which case it is also known as a transitive

reduction of �2. Before we address the computation of � , we state our main theorem.

Theorem 5.2. For any given ( , we have i� ≡(,key i� .

In order to formulate how� is constructed from�2, we describe the computation of the transitive

reduction on a general graph  . We first consider the transitive reduction of a set � of (-static edges

and then lift this definition to the level of graphs. For our computation, we additionally require �

to be acyclic. While this is a theoretical restriction, in practice we do not encounter the cyclic case:

a static cycle involving events X ⊆ X would imply that all program executions that include X are

always deemed inconsistent by the memory consistency model. The computation of the transitive

reduction is given by the following lemma.

Lemma 5.3. Let � be an acyclic set of static edges, then �−( = �+( \ (�+( ;( �
+( ) is a transitive

reduction of �.

We lift this transitive reduction to the level of graphs. Let  be an edge-labeled graph and let

 +( = (X, �, _) be its transitive closure. Let �( ⊆ � be the subset of (-static edges which we assume

to be acyclic. We then define the transitive reduction of  to be  −( = (X, (� \ �( ) ∪ �
−(
(
, _). With

this definition at hand, we can now set � = �−(
2

to complete Step 3. of our construction

5.2 Thinning

The idea of the thinning optimization is to remove from the SMT encoding constraints that define

a relation variable which does not influence (directly or indirectly) non-defining constraints of the

encoding. By non-defining constraints, we mean constraints imposed by the axioms of the memory

model as well as constraints imposed by the program (e.g., constraints on the base relations). The

computation is driven by these non-defining constraints and the static information ( will play an

important role. Say we have the axiom empty(n ∩ m) and ( tells us that some entries of m are

false, i.e., are outside of the may-set. Then we do not need to know the corresponding entries of n
to decide emptiness. Their defining constraints can be dropped from idef .

Thinning has to work on the full SMT encoding, including the program encoding, that has

already been optimized. The optimized version will still have the shape i(,p ∧ i(,mm ∧ i(,key with
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i(,mm = i(,def ∧ i(,axiom. Moreover, the optimizations guarantee that i(,def is a conjunction of

equivalences of one of the following forms:

nx,y ↔ def( (n, x, y) false↔ def( (n, x, y) execx ∧ execy ↔ def( (n, x, y).

Here, def( (n, x, y) is a formula (resulting from substitution) that we do not need to specify further.

Importantly, nx,y appears at most once on a left-hand side of an equivalence in i(,def . We can

therefore understand the equivalences as a simplified subset of the defining constraints C in idef .

The goal of thinning is to identify a subset of the defining constraints that can be removed from

the encoding without affecting satisfiability. We call those constraints inactive. Algorithmically, we

proceed the other way around and compute a set active ⊆ C of constraints that cannot be removed.

The complement inactive = C \ active are then the inactive constraints. Actually, we do not remove

just the inactive defining constraint of a relation variable nx,y but also its associated key implication

nx,y → execx ∧ execy from i(,key .

The computation of the active constraints is by saturation. Given a set of constraints that

have already been identified as active, we determine the relation variables contained in them

and declare the corresponding defining constraints also active. We thus make use of a helper set

relevant ⊆ RelationVars(i(,mm) of so-called relevant variables. Then, the sets of relevant variables

and active constraints are the least solution to the following equation system

relevant = relevant0 ∪ {nx,y | ∃2 ∈ active : nx,y ∈ RelationVars(2)}

active = active0 ∪ {nx,y ↔ def( (n, x, y) | nx,y ∈ relevant}.

The saturation is initialized with

relevant0 = RelationVars(i(,axiom) ∪ RelationVars(i(,p)

active0 = {2 ∈ C | 2 is false↔ def( (n, x, y) or execx ∧ execy ↔ def( (n, x, y)}.

Initially, all relation variables that appear in either the axioms or the program are relevant, corre-

sponding to the idea that those variables are important to decide whether an execution is consistent

with the memory model and whether it belongs to the program. The program formula i(,p usually

refers to precisely the base relations, meaning that initially all base relations as well as the relations

of axioms are relevant, but any derived relation in between is irrelevant. Moreover, we declare

active all equivalences where the left-hand side is not a relation variable, i.e., all equivalences of

the form false↔ def( (n, x, y) and execx ∧ execy ↔ def( (n, x, y). These constraints were obtained
by substituting in known values without eliminating the defining constraint. The fact that the con-

straints were not eliminated means that the static information we have computed top-down from

the axioms was enough to establish the left-hand side, while the information computed bottom-up

from the base relations was not precise enough to resolve the right-hand side def( (n, x, y). The
constraints thus reflect a gap in the static information coming from above and from below. This

gap has an influence on the semantics of the memory model and thus has to be encoded.

Let active denote the set of active constraints in the least solution to the equation system, and

let inactive = C \ active be the set of inactive constraints. We denote by i red
(,mm

the formula that is

obtained by dropping all inactive constraints from the subformula i(,def . Similarly, we let i red
(,key

be

the formula obtained by dropping all implications whose relation variable is defined by an inactive

constraint. Replacing i(,mm and istat,key by their reduced forms gives us an equisatisfiable encoding.

Theorem 5.4. i(,p ∧ i(,mm ∧ i(,key ≈ i(,p ∧ i
red
(,mm
∧ i red

(,key
.
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6 EVALUATION

We evaluate how the static analysis introduced in Section 4 simplifies the SMT encoding for memory

models as described in Section 5. We address the following research questions:

(RQ1) What is the reduction in the SMT encoding size by using static information and how does

this compare with the previous static analysis for memory models [Gavrilenko et al. 2019]?

(RQ2) What is the impact of using smaller encodings on verification time?

(RQ3) Does static information also improve the verification time of SMT theories tailored to memory

models [Haas et al. 2022]?

It is not a-priori clear that smaller encodings are better. We designed the evaluation to assess

exactly this. We implemented our static analysis on top of Dartagnan which already implemented

the encoding reduction described in [Gavrilenko et al. 2019]. It also supports a recently developed

SMT theory solver for memory consistency [Haas et al. 2022]. Below, we briefly describe these

techniques and how they relate to and can be combinedwith ourwork. Note that, while a comparison

to dynamic approaches like stateless model checking is interesting (and done in [Haas et al. 2022]),

it cannot be used to judge the presented techniques (which target bounded model checkers).

Relation analysis [Gavrilenko et al. 2019] is a static analysis for determining the pairs of events that

may influence axioms of the memory model. Any remaining pair can be dropped from the encoding.

It can thus be understood as a form of thinning that is weaker than the present development as we

will explain. Relation analysis makes use of may-sets (but no must-sets) and a simplified notion

of active sets. The resulting information is used to remove a defining constraint if both sides are

known and coincide. Substitution, as we propose it, is not performed. Our notion is more general

and allows us to replace the left-hand side in isolation (if the value is known) by making use of

top-down propagation. Consistency as a Theory [Haas et al. 2022] proposes a family of logical

theories for capturing the consistency requirements of memory models. The theories admit a

generic and efficient solver that works for TSO, Power, ARMv8, RISC-V, RC11, IMM, and LKMM.

For the latter, however, it cannot handle the definition of data races. This verification approach

encodes [[p]] using traditional theories and uses the specific theory solver to reason about [[mm]].
This approach can be combined with the static information we compute about base relations to

reduce the size of ip.

Our benchmark set contains programs that have been previously used to compare the perfor-

mance of modular verification tools [Haas et al. 2022; Kokologiannakis et al. 2019; Oberhauser

et al. 2021]. It includes non-trivial (thousands of executions) implementations of lock primitives

(CLH, CNA, Mutex, Musl mutex, RWLock, Spinlock, Ticketlock, Ticketlock with

array waiting nodes, TTAS) and lock-free data structures (Chase-Lev, DGLM, Michael-Scott,

Treiber) using C11 atomics. We use common compiler mappings [Sevcik and Sewell 2011] to

convert those atomics into the assembly instructions that memory models understand. Due to the

incompatibility between C11 atomics and LKMM [Corbet 2013a], we only analyze these bench-

marks w.r.t. ARMv8 and RISC-V. To include LKMM in the evaluation, we further use the version

of qspinlock from [Paolillo et al. 2021] which has Linux kernel atomics. Dartagnan compiles

those to ARMv8 and RISC-V using the inline assembly kernel implementation of atomics2. Each

program contains 3 to 6 threads (excluding the main thread). All loops were unrolled3 twice, except

spin loops which need to be unrolled only once (Dartagnan automatically detects this). After

unrolling, the resulting programs contain between 80 and 250 memory accesses (not counting

memory initialization) and fences.

2Located in the kernel source tree in arch/<target-arch>/include/asm/atomic.h

3Unrolled # times means that the body of the loop appears # times in the unrolled program.
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Table 1. Impact of the optimizations on different BMC approaches.

Bmc Approach May Must Unkn. Active Acyc. Con. Verif. Time Saf. Liv. D.R.F.

ARMv8

Cav19 2843320 0 2843320 397067 93214 00hs 30min 28s ✔ ✔ N/A

Thinn. + Subst. 2802649 2539540 263109 195227 83598 00hs 26min 40s ✔ ✔ N/A

Thinn. + Subst. + Acyc. 2802649 2539540 263109 194837 68817 00hs 19min 22s ✔ ✔ N/A

Oopsla22 + Cav19 26594 0 26594 26594 0 00hs 12min 23s ✔ ✔ N/A

Oopsla22 + Flatt. 23778 1528 22250 22250 0 00hs 08min 27s ✔ ✔ N/A

RISC-V

Cav19 3218051 0 3218051 386904 91614 00hs 15min 50s ✔ ✔ N/A

Thinn. + Subst. 3196006 2921072 274934 150427 84474 00hs 19min 42s ✔ ✔ N/A

Thinn. + Subst. + Acyc. 3196006 2921072 274934 150427 70504 00hs 13min 16s ✔ ✔ N/A

Oopsla22 + Cav19 26594 0 26594 26594 0 00hs 10min 21s ✔ ✔ N/A

Oopsla22 + Flatt. 23794 1528 22266 22266 0 00hs 07min 05s ✔ ✔ N/A

LKMMv6.3

Cav19 2980569 0 2980569 733090 64242 02hs 46min 10s ✔ ✔ ✔

Thinn. + Subst. 2924423 910682 2013741 563966 58448 01hs 31min 59s ✔ ✔ ✔

Thinn. + Subst. + Acyc. 2924423 910682 2013741 563966 55472 01hs 37min 14s ✔ ✔ ✔

Oopsla22 + Cav19 8094 0 8094 8094 0 00hs 03min 10s ✔ ✔ ?

Oopsla22 + Flatt. 7318 632 6686 6686 0 00hs 02min 27s ✔ ✔ ?

The results of our evaluation are given in Table 1. We refer to the verification approach

from [Gavrilenko et al. 2019] as Cav19, the second uses Thinning, and the 3rd additionally

the Acyclicity optimization. We emphasize that without any static information (e.g., at least the

one computed by Cav19), the verification time to solve the eager encoding is intractable for all the

given benchmarks. Since the approach described in [Haas et al. 2022] used relation analysis, we

refer to it as Oopsla22 + Cav19. The approach encodes only the base relations and uses a dedicated

theory solver to reason about the derived relations and the axioms. Therefore, neither Thinning

nor our improved Acyclicity encoding apply. However, we can still substitute known values for

the base relations. ColumnsMay andMust show the number of pairs in the may and must-sets

(summed over all relations and all benchmarks). Unknown is the difference between the previous

two columns. The number of Active constraints (the subset of Unknown for which we introduce

Boolean variables) is given in the 4th column. The 5th column reports the number of implications

nx,y → clkn,x < clkn,y encoding acyclicity axioms. The overall Verification Time reports the sum

of the static analysis, encoding, and SMT solving times.Dartagnan uses JavaSMT [Baier et al. 2021;

Karpenkov et al. 2016], a library that supports several SMT solvers, to discharge the verification

problem. The table reports the times obtained with Yices2. We have tried other solvers (Z3 and

Mathsat5) and derived similar results. The right-most part of the table shows the correctness

conditions that have been checked. We checked Safety in the form of assertions (e.g., guaranteeing

mutual exclusion), Liveness as described in [Lahav et al. 2021], and Data Race Freedom. The

notion of data race only makes sense for programming languages and thus does not apply (N/A) to

hardware memory models. For LKMM we used the notion from [Alglave et al. 2018]. As previously

stated, the lazy encoding from [Haas et al. 2022] does not encode the derived happens-before

relation, and thus does not handle data races (? in the table).

To answer (RQ1), we focus on the columnsMay,Must, Active,Acyclicity Constraints, and the

first three rows of each memory model. For the rest of the paragraph, we take Cav19 as the baseline.

Our static analysis provides more precise may-sets. While Cav19 only has forward propagation,

we also propagate information from relations back to their definitions, thanks to filters. The effect
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is amplified by must-sets (which Cav19 lacks). Both, may and must-sets, justify more aggressive

reductions of the active constraints, which directly influence the number of Boolean variables in

the encoding. Our analysis reduces the number of Boolean variables between 23% (LKMM) and 62%

(RISC-V). While Cav19 already removes acyclicity constraints false→ clkn,x < clkn,y, our stronger
static analysis leads to more simplifications of the same form. The further improvements in Thinn.

+ Subst. + Acyc. are due to the improved acyclicity encoding. Overall, our analysis removes 26%,

23%, and 14% of the acyclicity constraints in ARMv8, RISC-V, and LKMM, respectively.

The column Verification Time answers (RQ2). The encoding optimizations reduce the veri-

fication times of the eager approach w.r.t. Cav19 by 36%, 16%, and 41% for ARMv8, RISC-V, and

LKMM, respectively. Interestingly without using the improved acyclicity encoding, our analysis

performs worse than Cav19 for RISC-V. On the other hand, for LKMM we get the best results by

just applying Thinning without the acyclicity optimization. In either case, applying all proposed

encoding optimizations gives consistently better results than the Cav19 encoding.

To answer (RQ3), we focus on the last two rows of each memory model. The SMT encoding of

Oopsla22 + Cav19 only refers to base relations. The interpretation of other relations is derived

from the solution of the SMT solver for ip. Because of this, the encoding is much simpler than

Cav19 and there is less room for optimizations compared to the eager encoding. Nevertheless, the

results show a benefit from the static analysis comparable to the eager encoding.

In general, we observe that the optimizations are weaker the more the derived relations depend

on dynamic base relations (like rf and co, as opposed to static base relations like po). Dynamic

information makes it harder for our analysis to compute information, a fact that is amplified by

complex dependencies (long chains) in a memory model. As a concrete example, the static po
relation plays an important role in the happens-before relation of sequential consistency (defined

as let hb = po ∪ rf ∪ co ∪ fr). Because of this, our analysis propagates a lot of information from

po to hb. Weaker models typically define the preserved program order relation ppo ⊆ po which
is then used to define hb-like relations. Since the analysis can derive less information from ppo
than from po (from the simple fact that typically it contains fewer pairs of events), there is less

information to propagate from ppo to the derived relations depending on it. Besides a weaker notion
of program order to formulate happens-before, models like Power, LKMM, and ARMv7 also make

use of an additional propagation relation to express their non-multicopy atomicity [Mador-Haim

et al. 2012; Pulte et al. 2018]. This propagation relation tends to be both larger in size and less static

than hb which makes it harder to analyze statically. This explains why we observe for LKMM a

smaller reduction in both the Active constraints and the Acyclicity constraints compared to the

multicopy-atomic hardware memory models.

7 FUTURE WORK

We have given a new filter-based semantics for memory models defined in the CAT language.

An important feature of this semantics is its flexibility to incorporate information from external

sources (via filters). So far, we have used this opportunity only to incorporate program information.

However, we believe there are further interesting applications.

Exploiting symmetries in the verification task is known to be important for scalability [Emerson

and Sistla 1993]. Consider identical threads )1 and )2 that try to enter their critical sections CS8 .
For verification, it may be sufficient to assume that )1 will go first. A symmetry filter could filter

out all executions where)1 is not first. Its abstract version would give us the must information that

all events in CS1 are guaranteed to be happens-before related to all events in CS2.
We see this forced happens-before ordering as a scheduling constraint [Metzler et al. 2019]. We

plan to use scheduling constraints to parallelize the verification [Nguyen et al. 2017]. We split the
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task into scheduled subtasks, analyze and simplify these subtasks using a scheduling filter, and then

solve the simpler subtasks in parallel.

Another use case is to incorporate information about the correctness condition. In bounded

model checking, we are only interested in executions that violate correctness. Suppose correctness

is formulated as assert (x != 42). An assertion filter could filter out executions where the assertion

holds. Using this information in the abstract is not immediate, though: the assertion restricts the

value of G , but abstract filters restrict relations. A data-flow analysis is needed to bridge the gap.

8 DATA AVAILABILITY STATEMENT

The complete benchmark set as well as the code to generate Table 1 of Section 6 are provided in

the accompanying artifact [Haas et al. 2023]. The Dartagnan tool used in the evaluation can be

found at https://github.com/hernanponcedeleon/Dat3M.
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