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Recurrence sets characterize non-termination in sequential programs.We present a generalization of recurrence
sets to concurrent programs that run onweakmemorymodels. Sequential programs have operational semantics
in terms of states and transitions, and classical recurrence sets are defined as sets of states that are existentially
closed under transitions. Concurrent programs have axiomatic semantics in terms of executions, and our new
recurrence sets are defined as sets of executions that are existentially closed under extensions.

The semantics of concurrent programs is not only affected by the memory model, but also by fairness
assumptions about its environment, be it the scheduler or the memory subsystems. Our new recurrence sets
are formulated relative to such fairness assumptions. We show that our recurrence sets are sound for proving
fair non-termination on all practical memory models, and even complete on many.

To turn our theory into practice, we develop a new automated technique for proving fair non-termination
in concurrent programs on weak memory models. At the heart of this technique is a finite representation of
recurrence sets in terms of execution-based lassos. We implemented a lasso-finding algorithm in Dartagnan,
and evaluated it on a number of programs running under CPU and GPU memory models.
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1 Introduction
Non-termination in concurrent programs is a significant challenge, arguably even more so than
in sequential programs. This is because thread synchronization often relies on waiting mech-
anisms, which are typically implemented using unbounded loops and can potentially lead to
non-termination. What makes this problem particularly hard is that the memory subsystem over
which the threads communicate may exhibit weak behaviors. It may reorder load and store requests,
buffer them in thread-local storage, and even asynchronously propagate stores (i.e., one thread
may see a new value in memory, while another still sees the old one). All of these behaviors impact
the program’s semantics and, if not accounted for, may lead to non-termination bugs [18, 34].
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Different CPU and GPU architectures, and even programming languages like C11 and Java, come
with different guarantees about how their memory subsystem behaves, commonly described by
their so-called memory consistency models [5, 8, 29, 31, 40].
To further complicate the matter, the termination of a concurrent program also depends on

fairness assumptions [14]. A memory subsystem that never propagates stores or that infinitely
reorders/delays requests past other ones would be considered unfair. However, in most real systems,
the memory subsystem can be assumed to be fair. In a similar vein, fairness assumptions about the
scheduler are also crucial: if a thread that everyone is waiting for never gets scheduled, the program
will hang. Unlike memory fairness, there do exist real systems which exhibit unfair scheduling
behavior and programs need to be tolerant about it. For example, GPUs generally provide only
weak scheduling (also known as forward progress) guarantees. The difference in forward progress
guarantees is known to cause some parallel algorithms to fail to be portable across different GPU
architectures [24, 43, 44]. Progress guarantees also exist on the language level, for example, C++
does not require that a language implementation provides fair progress for threads, not even the
main thread (however, it encourages implementations to do so).

Non-termination of single-threaded systems is characterized by the existence of a certain proof
object, a so-called recurrence set, first introduced by Gupta et al. [15]. Intuitively, a recurrence set
is a set of states that is reachable and each of its states has a transition that stays inside. Naturally,
we would like to have a generalization of recurrence sets to concurrent systems that takes into
account all of the aforementioned issues, that is, the memory consistency model and the fairness
assumptions about the memory and the scheduler. This is precisely the contribution of our work.
The main difficulty in coming up with this generalization is the handling of the memory con-

sistency model. The reason is that memory models are commonly formulated in an axiomatic
style, that reasons about whole program executions rather than single states and transitions [3, 6].
Indeed, a key point of axiomatic semantics of concurrent programs is the lack of a classical notion
of shared state. Instead, the semantics views a program execution as a graph of interactions and
communications between threads.
To overcome this problem, our first contribution is to move from state-based to execution-

based recurrence sets. Intuitively, such a recurrence set will consist of ever larger prefixes of
executions that approximate an infinite, and thus non-terminating, execution. These execution-
based recurrence sets will give us a sound, and in many cases even complete, characterization of
non-termination relative to the memory model and fairness assumptions of interest.
While the above generalization is interesting by itself, state-based recurrence sets have algo-

rithmic advantages. State-based recurrence sets can be finite, in which case they represent a
non-terminating run where some finite set of states is repeatedly visited (also known as a lasso).
Even if they are not finite, they can often be represented by finite means using symbolic representa-
tions. Both cases enable the usage of automatic techniques to prove non-termination [11, 15, 33]. In
contrast, our execution-based recurrence sets cannot be finite since they must contain ever-larger
execution prefixes. Yet, to our knowledge, there do not exist readily applicable techniques that
could yield finite representations for infinite sets of such executions.

Our second contribution tackles this problem by developing a suitable abstraction. Our key idea
is to move from execution prefixes to execution infixes, i.e., snippets of executions, by abstracting
parts of the execution that are "sufficiently far in the past". This will allow us to obtain execution-
based lassos that represent a finite set of repeating infixes, rather than a finite set of repeating
states. In the extreme case, where we abstract down to minimally-sized infixes, we will recover
classical state-based recurrence sets and lassos. This is no coincidence: a state can be understood as
a particularly small infix of a program execution. Therefore, our execution-infix-based recurrence
sets are a proper generalization of the classical ones.
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T1:
x = -1;
while(y != 1) {

x = 0;
x = 1;

}

T2:
while(x != 0);
y = 1;

W(x,-1) R(y,0) W(x,0) W(x,1) R(y,0) W(x,0) W(x,1)

R(x,-1) R(x,1) R(x,1)

Past (𝑦 = 0, 𝑥 = 0) Infix

Repeating Past (𝑦 = 0, 𝑥 = 0) Rep. Infix

Fig. 1. A non-terminating program under weak fairness (left) and an execution-based lasso (right). Two infixes

repeat with a common past (modulo abstraction).

We illustrate execution-based lassos in Figure 1. T1 initially writes 𝑥 = −1 and then starts a loop
that writes 𝑥 = 0 followed by 𝑥 = 1 in each iteration, until it gets the signal to terminate (𝑦 = 1)
from T2. T2 waits until it observes 𝑥 = 0 from T1, and once it does, it writes 𝑦 = 1, signaling T1 to
stop, and then terminates. Under weak fairness assumptions, T2 may always observe the second
write 𝑥 = 1 of each iteration of T1 and skip over 𝑥 = 0. The execution-based lasso that captures this
non-terminating behavior is given on the right of the figure. The fact that T2 repeatedly observes
𝑥 = 1 from T1 is captured by the repeating infix of the lasso. The past that lead to the first repetition
of the infix is equivalent to the past that lead to the second repetition because, roughly speaking,
both pasts produce the same final memory state (highlighted in red).

Our final contribution is an extension to Dartagnan [36–38], a bounded model checker for weak
memory concurrency, that automatically finds execution-based lassos in programs using SMT-based
bounded model checking. This enables us to automatically prove the lack of portability (due to
non-termination) of parallel algorithms in the absence of forward progress guarantees. While the
lack of portability is regarded as folklore in the GPU community, to the best of our knowledge, no
tool has yet been able to prove it. We also used Dartagnan to reproduce known results about
the need for barriers in several spinlock implementations to avoid non-termination [39] and how
different forward progress guarantees affect the termination of litmus tests [46].

2 Concurrent Programs & Axiomatic Semantics
We present the basic notions of concurrent programs, memory consistency models, and the ax-
iomatic semantics they induce.

2.1 Concurrent Programs
We consider concurrent programs 𝑝 that are a top-level parallel composition of (possibly infinitely
many) sequential programs, the so-called threads. Each thread is identified by a unique thread
identifier 𝑡 ∈ Tid and its instructions work over a set of local registers Reg𝑡 and a set of shared
locations Loc. The (local) configuration of a thread is standard: it consists of a program counter
𝑝𝑐 ∈ Pc𝑡 (initially pointing to the first instruction) and a valuation 𝜆 ∈ Reg𝑡 → Z of all its registers
which are initially zero. We assume that 𝑝𝑐 may take a special value ⊥ that indicates termination.
Formally, the configurations of a thread are given by the set Conf𝑡 := Pc𝑡 × (Reg𝑡 → Z) and we
denote its elements by 𝑐 = (𝑝𝑐, 𝜆).
A thread 𝑡 induces a labeled transition system LTS(𝑡) over configurations. The execution of

an instruction emits a (possibly empty) sequence of events that form the labels of the transitions.
Events always contain the thread id of the executing thread and the 𝑝𝑐 of the executed instruction.
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The local instructions, such as register assignments and branching, do not emit any events1 and
transform the local state as expected. The memory instructions work as follows.

(i) A store instruction emits a write event W(𝑙, 𝑣) containing the accessed location 𝑙 and the
written value 𝑣 . It does not change the local state other than incrementing the 𝑝𝑐 .

(ii) A load instruction 𝑟 := load(𝑙) assign a non-deterministically chosen value 𝑣 to register 𝑟 ,
and emits the read event R(𝑙, 𝑣).

(iii) A fence instructions emits a fence event containing the name/kind of the fence.
(iv) Read-modify-write (rmw) instructions come in multiple flavors depending on what local

modifications they do and if they are guaranteed to succeed (e.g., a compare-and-swap
may fail). In all cases, a rmw can be understood as a load, followed by a sequence of local
instructions, and possibly a final store. This instruction sequence gives both the local effect
on the state and the emitted event sequence.

A run of thread 𝑡 is a (possibly infinite) sequence 𝜌𝑡 = 𝑐0 .𝑥0,0 . . . 𝑥0,𝑘0 .𝑐1.𝑥1,0 . . . 𝑥1,𝑘1 .𝑐2 . . . alter-
nating between configurations and event sequences induced by the LTS. A run is called maximal if
it is infinite or ends in a configuration without transitions, i.e., where 𝑝𝑐 = ⊥ holds. A run is called
initialized if it starts in the initial configuration. We denote the set of runs of a thread by Runs𝑡 .
For a concurrent program 𝑝 =

∏
𝑖 𝑡𝑖 we define its set of runs by Runs :=

∏
𝑡 Runs𝑡 and its set

of configurations by Conf =
∏

𝑡 Conf𝑡 . A program run 𝜌 ∈ Runs, thus, maps each thread 𝑡 ∈ Tid
to a run 𝜌𝑡 ∈ Runs𝑡 of that thread. We say that the program run is finite if the total size of all its
thread runs is finite; otherwise, it is infinite. We say that the run is initialized if all its thread runs
are initialized and it is maximal if it is infinite or all its thread runs are terminating. If the number
of threads is finite, then every maximal program run contains a maximal thread run.
If a run 𝜌𝑡 is the prefix of another run 𝜌 ′𝑡 of the same thread 𝑡 , then we denote this by 𝜌𝑡 Ď 𝜌 ′𝑡

and also call 𝜌 ′ an extension of 𝜌 . Naturally, a program run 𝜌 is a prefix of 𝜌 ′, also denoted by
𝜌 Ď 𝜌 ′, if we have for each thread 𝑡 that 𝜌 (𝑡) is a prefix of 𝜌 ′ (𝑡).

2.2 Anarchic Semantics
Every program run 𝜌 ∈ Runs induces an edge-labeled event graph 𝐸𝐺 (𝜌) = (𝑋, po, rmw, . . . ). The
nodes 𝑋 of this graph are the events Ev(𝜌) appearing in the run plus a (possibly infinite) set of
special initializing write events that write 0 to each memory location. The labeled edges are given
in the form of several binary relations over the events 𝑋 , the so-called base relations, and capture
some information of the run in the graph. One such relation is po which relates an event 𝑥 to 𝑦
if both are in the same thread and 𝑦 appears later in the thread’s run. Another relation is rmw

which relates a read event to a write event if they were emitted from the same transition of an rmw
instruction. There exist other base relations that we will introduce when necessary. The set of base
relation names is denoted by R𝐵 , and we understand an event graph as giving an interpretation to
these base relation names over a common domain 𝑋 . By abuse of notation, we often use a relation
name, say po, to mean either the relation name or the concrete interpretation of that relation name
in an event graph if it is clear from context. We write 𝐸𝐺.𝑋 to denote the events of a graph and if
the context is unclear, we write 𝐸𝐺.r, 𝐸𝐺 (r) or r(𝐸𝐺) to mean the interpretation of r in 𝐸𝐺 .

An event graph 𝐸𝐺 is justifiable if there exist a read-from relation rf and a coherence relation co

satisfying the following properties. Read-from relates write events to read events such that (i) each
read 𝑟 ∈ 𝐸𝐺.𝑋 has exactly one write that relates to it and (ii)whenever rf(𝑤, 𝑟 ) holds then the values
and locations of the related events match. Coherence totally orders all write events to the same
location (with init writes always being first) and never relates write events to different locations,
i.e., coherence can be understood as a union of total orders, one total order per memory location. A
1This simplifies the presentation.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 45. Publication date: January 2026.



Recurrence Sets for Proving Fair Non-termination under Axiomatic Memory Consistency Models 45:5

justifiable event graph together with a justification forms an execution graph 𝑋𝐺 = (𝐸𝐺, rf, co),
which we often write in flattened form 𝑋𝐺 = (𝑋, . . . , rf, co). In many contexts, we understand rf

and co as being part of the base relations R𝐵 . A program run 𝜌 is called justifiable if its event graph
𝐸𝐺 (𝜌) is justifiable. An (anarchic) execution of a program 𝑝 is a pair 𝜀 = (𝜌,𝑋𝐺) of an initialized
and maximal run together with an execution graph that justifies its corresponding event graph.
The anarchic semantics of a program 𝑝 , denoted by ⟦𝑝⟧, is now given by its set of executions.

2.3 Memory Consistency Models
A memory (consistency) model𝑚𝑚 is a predicate on execution graphs that tells us if the execution
graph 𝑋𝐺 is considered consistent, denoted by denoted by 𝑋𝐺 |=𝑚𝑚, from the perspective of the
architecture being modeled, meaning it can occur as behavior. The semantics of a program under
a memory model is then defined by ⟦𝑝⟧𝑚𝑚 = {𝜀 ∈ ⟦𝑝⟧ | 𝜀.𝑋𝐺 |= 𝑚𝑚}, the subset of program
executions that are consistent with the memory model.

We consider memory models formulated in the CAT language [4]. Such a memory model makes
judgments purely based on the base relations, e.g. the rf-edges and co-edges in the execution graph,
but not on, say, concrete values and addresses communicated by events.

mm ::= axm | def | mm ∧mm

axm ::= acyclic(r) | irreflexive(r)
| empty(r) | empty(s)

def ::= let rn := r | let sn := s

r ::= br | rn | r ∪ r | r ∩ r | r \ r
| r ; r | r−1 | r+ | [s] | s × s

s ::= bs | sn | domain(r) | range(r)
| s ∩ s | s ∪ s | s \ s

br ::= id | rf | co | po | . . .
bs ::= X | W | R | F | . . .

Fig. 2. CAT Grammar.

Intuitively, this means that the memory model reasons
about the shape of the execution graph. To do so, the
CAT language defines so-called derived relations (aux-
iliary relations), the names of which we denote by R𝐷 ,
using relation algebra over base relations and other de-
rived relations. We assume that R𝐵 and R𝐷 are disjoint
and denote their union by R := R𝐵 ∪ R𝐷 . For example,
fr := rf

−1; co and hb := po ∪ co ∪ rf ∪ fr are derived rela-
tions. Over these derived relations, the memory model
then imposes constraints such as acyclic(hb), stating that
execution graphs are consistent only if the derived hb-
relation is acyclic on those graphs. In addition to binary
base and derived relations, there exist also unary relations
(sets) that denote, for example, the set of write events
W or the set of read events R. The complete grammar
of the CAT language is given in Figure 2. We use the
standard shorthand notations for the reflexive, transitive closure r∗ := r

+ ∪ id and the negation
¬r := (𝑋 × 𝑋 ) \ r (or ¬r := 𝑋 \ r, if r is a set). Notice that CAT permits recursive definitions.

Formally, a CATmemory model𝑚𝑚 describes a mapping of an interpretation of the base relations
𝐼𝐵 : R𝐵 → P(𝑋 ) +P(𝑋 ×𝑋 ) (over a common domain𝑋 ) to an interpretation of the derived relations
𝐼𝐷 : R𝐷 → P(𝑋 ) +P(𝑋 ×𝑋 ) and a consistency judgment 𝐽 : B = {0, 1} where 0 denotes consistency
and 1 denotes inconsistency.
Intuitively, the computation of 𝐼𝐷 is done by repeatedly evaluating the definitions of the CAT

model until a fixed point is reached, and on this fixed point the final consistency judgment is made.
Actually, in the presence of difference operators, the order of evaluation matters and should follow
a so-called stratification. We leave out the details as they are unimportant for our development.

The meanings of 0 and 1 for the consistency judgment seem reversed. The reason we do this is for
technical simplicity: the axioms in CAT are antitonic with respect to the standard ordering (larger
relations are more likely to violate an axiom) but we want to see them as monotonic. Alternatively,
one could also choose to reverse the ordering on B and have 1 < 0.
We can naturally lift 𝑚𝑚 to a function on executions 𝑚𝑚((𝜌,𝑋𝐺)) = 𝑚𝑚(𝑋𝐺) where 𝑋𝐺

provides the domain and the interpretations of the base relations over that domain. It is also
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convenient to think of𝑚𝑚 as enriching a given execution (graph) with new relations r ∈ R𝐷 . This
allows us to write 𝑋𝐺.r (or similar) also for derived relations r ∈ R𝐷 to refer to the interpretation
of r obtained by evaluating𝑚𝑚 over 𝑋𝐺 .
To simplify the presentation in the remaining paper, we will assume that there are only binary

relations. After all, we can identify a set by the (binary) identity relation on that set, thereby lifting
all sets to binary relations.

3 Fairness
The concurrent programs we have defined so far may exhibit unfair behavior where certain actions
they could take are delayed indefinitely. Such unfair behavior comes in many flavors: an active
thread is never scheduled, a buffered store is never flushed, a reorderable instruction is reordered
past infinitely many others, an instruction that may spuriously fail never succeeds, and so on. A
typical (idealized) assumption is that real concurrent programs do not exhibit such unfair behavior
and so they should not be considered when the system is analyzed w.r.t. non-termination. That
being said, sometimes (partially) unfair behavior is expected. For example, concurrent programs
executed on GPUs may experience unfair scheduling [45]. This is in contrast to programs executed
on CPUs where the OS-provided scheduler is expected to guarantee fairness. Seeing that fairness is
crucial to non-termination of concurrent programs, we need to model it.

3.1 Scheduler Fairness
We define scheduler fairness by a function that tells us, at any given moment in time, which threads
are subject to fair scheduling. Unlike traditional operational schedulers, the scheduler fairness
function does not tell which thread performs the next transition, but rather which threads are
guaranteed to eventually make a step if their fairness status is not revoked. We make this formal.
For a finite program run 𝜌 we define its final configuration 𝑐 (𝜌) ∈ Conf to be the program

configuration obtained by taking the final thread configuration 𝑐 (𝜌 (𝑡)) of each thread run. A
scheduler function 𝜎 : Conf → P(Tid) maps configurations to a (possibly empty) set of threads,
the threads which are currently subject to fair scheduling. We extend the definition of 𝜎 to finite
runs by 𝜎 (𝜌) := 𝜎 (𝑐 (𝜌)). We further extend it to infinite runs 𝜌 via 𝜎 (𝜌) :=⋂

𝜌𝑖→𝜌 lim inf𝑖 𝜎 (𝜌𝑖 ) =⋂
𝜌𝑖→𝜌

⋃
𝑖

⋂
𝑗≥𝑖 𝜎 (𝜌 𝑗 ), where

⋂
𝜌𝑖→𝜌 denotes an intersection over all increasing sequences (𝜌𝑖 )𝑖∈N

of finite runs that converge to 𝜌 . We explain this definition. A thread 𝑡 ∈ 𝜎 (𝜌) is subject to fair
scheduling if in all sequences of finite approximations of 𝜌 , there is a point from which onward 𝑡 is
continuously subject to fair scheduling. Now we say that an infinite run 𝜌 is 𝜎-fair if for all threads
𝑡 ∈ Tid we have 𝑡 ∈ 𝜎 (𝜌) implies that 𝜌 (𝑡) is a maximal run in LTS(𝑡). Naturally, we can lift the
scheduler function to executions via 𝜎 (𝜀) := 𝜎 (𝜀.𝜌) and talk about 𝜎-fair executions.
We give a few examples of scheduler functions 𝜎 . Fully unfair scheduling is given by 𝜎 (𝑐) = ∅

and fully fair scheduling is given by 𝜎 (𝑐) = Tid. For GPUs, other scheduler models have been
proposed in the literature [45, 46]. One of the proposed models is called OBE, where every thread
that has taken at least one step experiences fair scheduling, that is, 𝜎𝑂𝐵𝐸 (𝑐) = {𝑡 | 𝑐 (𝑡).𝑝𝑐 ≠ 𝑝𝑐𝑖𝑛𝑖𝑡 }.
Another model for GPUs is HSA, where the active thread with the lowest id is subject to fairness,
i.e., 𝜎𝐻𝑆𝐴 (𝑐) = {min𝑡 {𝑡 | 𝑐 (𝑡).𝑝𝑐 ≠ ⊥}}. Similar to OBE, linear occupancy-bound execution (LOBE)
guarantees fair scheduling to any thread that has taken a step, or if its id is smaller than a thread that
has taken a step, i.e., 𝜎𝐿𝑂𝐵𝐸 (𝑐) = {𝑡 | ∃𝑡 ′ ≥ 𝑡 : 𝑐 (𝑡 ′).𝑝𝑐 ≠ 𝑝𝑐𝑖𝑛𝑖𝑡 }. A straightforward approach to
create new fairness properties from existing ones is to consider the disjunction of their guarantees.
This idea has been used to define the HSA+OBE model [45].
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3.2 Memory Fairness on Execution Graphs
Memory fairness captures the idea that actions/events are not delayed indefinitely. Intuitively, an
infinitely delayed event must have infinitely many events happening before it. In terms of execution
graphs, this means that the event has infinitely many predecessors in, say, a happens-before relation
hb. Therefore, memory fairness can be characterized by the absence of events with infinitely many
predecessors. We make this formal.

Let 𝑋𝐺 be an infinite execution graph and let r be a relation on 𝑋𝐺.𝑋 . We define the r-prefix of
an event𝑦 by prefix(r, 𝑦) := {𝑥 | (𝑥,𝑦) ∈ r+}. We say that𝑋𝐺 is r-(memory-)fair, if r is prefix-finite
in 𝑋𝐺 , meaning that for all 𝑦 ∈ 𝑋𝐺.𝑋 we have that prefix(r, 𝑦) is finite. It is 𝑅-(memory-)fair if it
is r-fair for every r ∈ 𝑅.
Lahav et al.[22] characterized memory fairness for several memory models as {co, fr}-fairness.

Intuitively, the former says that no store is buffered indefinitely and the latter says that each store
eventually propagates to all threads. Indeed, for some models it may be necessary to also require
hb-fairness to prevent infinite reordering. It is not precisely clear what would be the right notion
of memory fairness for each memory model; a reason why we keep the theory fully general.

We remark that the above notion of memory fairness is considered weak, which we explain on the
introductory example in Figure 1. Without memory fairness, T2 may read 𝑥 = −1 indefinitely, never
seeing any of the infinitely many other stores of T1. Under (weak) memory fairness (concretely
fr-fairness), T2 cannot read 𝑥 = −1 forever, but it may forever observe the infinitely many instances
of 𝑥 = 0, always skipping over 𝑥 = 1, and therefore fail to terminate. Under strong(er) memory
fairness assumptions such as presented in [1], T2 must eventually observe 𝑥 = 1 and thus terminate.

3.3 Other Fairness Considerations
Some instructions in a program may fail spuriously, such as a weak CAS in C(++) or a load-
linked/store-conditional (LL/SC) pair on hardware. The platform typically guarantees forward
progress for those instructions, meaning that if they are performed in a retry-loop, they will
eventually succeed and the loopwill terminate. This is a type of fairness assumption that wemention
for the sake of completeness but otherwise ignore in the remainder of the paper. Nevertheless,
including it in our main theory is straightforward.

4 Recurrence Sets
Our goal is to characterize non-terminating behavior in concurrent programs. Our approach is to
take the classical notion of recurrence sets - a complete characterization of non-termination - and
adapt it to the axiomatic weak memory setting. To this end, we recall what recurrence sets are.

Definition 4.1 (Operational Recurrence Set). A recurrence set is a set of states Rec that is (i) reach-
able from the initial states and (ii) every state inside has a transition leading back into it.

It is easy to see that the existence of recurrence sets gives rise to non-terminating runs: by
property (i) the system can reach the recurrence set and by property (ii) it can stay forever inside.
Conversely, the states observed along any non-terminating run form a recurrence set. Therefore,
recurrence sets are complete.

4.1 Generalizations
Now let us discuss how the adaption to weak memory works and what problems we need to
tackle. The first problem we encounter is that axiomatic semantics does not reason about states but
rather runs/executions. This conceptual gap, however, is easy to bridge: we can redefine classical
recurrence sets to be a set of (finite) linear runs rather than a set of states, and let the transition
relation extend the runs by appending new states. Indeed, such run-based recurrence sets are
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equivalent to state-based recurrence sets in the sense that the existence of one implies the existence
of the other. If we now replace the linear runs by partially ordered ones, we get a definition that is
more suitable for axiomatic weak memory. Unfortunately, this relaxation is not enough.

A key feature of axiomatic semantics is that we only need to justify maximal runs by constructing
an execution graph. However, we cannot build run-based recurrence sets from maximal runs only.
To reconcile this discrepancy, we define execution (graph) prefixes that may provide only partial
justifications for initialized (non-maximal) runs. This gives rise to execution-based recurrence sets.

The second problem we face is that classical recurrence sets lack the concept of fairness entirely.
We incorporate scheduler fairness and memory fairness into our definition of recurrence sets to
obtain fair recurrence sets.
We shortly sketch the definitions we need in order to formulate fair recurrence sets and state

our main theorem. Later we will make the definitions precise. An execution prefix is a (possibly
non-maximal) run together with a partial execution graph that may contain so-called unjustified
reads, whose corresponding write partner will appear in the future of the run. Execution prefixes
can be extended by extending the run and its execution graph accordingly. We want to construct
a sequence of increasing execution prefixes that converges to an infinite, consistent, and fair
execution. To ensure memory fairness in this construction, we need to make sure that for each
memory-fair relation r and each event 𝑥 , we eventually stop increasing the r-prefix of 𝑥 when
extending the execution prefixes. To do so, we add a prefix-completeness marker 𝜋 that keeps
track of those events whose r-prefix is complete for each memory-fair relation r. We then only
consider extensions that do not touch the prefix of already marked events, and call them memory-
fair extensions. Lastly, to ensure scheduler fairness, we need to make sure that fairly-scheduled
threads get extended. We say that an extension 𝜌 Ď 𝜌 ′ 𝜎-progresses a non-terminated thread 𝑡 , if
𝑡 ∈ 𝜎 (𝜌 ′) =⇒ 𝜌 (𝑡) Ĺ 𝜌 ′ (𝑡), meaning 𝑡 ’s run gets extended if its fairness status is not revoked.
We naturally lift this to notion to extensions of executions.

Definition 4.2 (Fair recurrence sets). Let 𝑝 be a program,𝑚𝑚 a memory model, 𝜎 a scheduler
fairness function, and 𝑅 ⊆ R a set of relations of𝑚𝑚. A fair recurrence set Rec is a non-empty set
of finite execution prefixes of the program 𝑝 satisfying the following properties for each 𝜀 ∈ Rec:

(i) 𝜀 has a proper and consistent extension 𝜀 Ď 𝜀′ ∈ Rec.
(ii) If 𝜀 has an unjustified read, then there is an extension that justifies this read.
(iii) For each non-terminated thread 𝑡 ∈ 𝜎 (𝜀) there is an extension that 𝜎-progresses 𝑡 .
(iv) For each relation r ∈ 𝑅 and event 𝑥 ∈ 𝜀.𝑋 there is an extension 𝜀 Ď 𝜀′ such that 𝑥 ∈ 𝜀′ .𝜋 (r).
(v) All of the above extensions are memory-fair.

We sketch the soundness of fair recurrence sets, that is, the existence of a fair recurrence set
implies the existence of a fairly non-terminating execution. The idea is that we start with any
execution prefix 𝜀 ∈ Rec and iteratively use properties (i)-(iv) to extend this prefix. In this way,
we construct an increasing sequence of execution prefixes that converges to a 𝜎-fair, 𝑅-fair, and
consistent infinite execution in the limit. The scheduler fairness is guaranteed by property (iii)
and the memory fairness is guaranteed by properties (iv) and (v). To formally prove this, we will
need to study the properties of such sequences. As it turns out, the soundness is not unconditional:
the memory model of interest is required to be lower semi-continuous, a property that ensures that
consistency and memory fairness behave nicely in the limit. We give the definition later.

Theorem 4.3 (Fair recurrence sets are sound). Let Rec be a fair recurrence set for program 𝑝

and lower semi-continuous memory model𝑚𝑚. Then there is a fair and non-terminating execution
of 𝑝 that is consistent with𝑚𝑚.

Fortunately, it turns out that many memory models are lower semi-continuous.
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Claim 1 (Practical memory models are lower semi-continuous). The following memory
models are lower semi-continuous: SC, TSO, ARM8, Power, RISCV, RC11, IMM, LKMM, NVIDIA PTX,
Vulkan, and OpenCL. We believe this holds true for all practical memory models.

Indeed, most memory models are even monotonic (defined as expected in the next section). For
those memory models, fair recurrence sets are complete. Roughly, the argument for operational
recurrence sets works again: for a fair, consistent, and non-terminating execution, the set of its
prefixes forms a recurrence set.

Theorem 4.4 (Completeness for monotonic memory models). Let 𝑝 be a program, 𝑚𝑚 a
monotonic memory model, 𝜎 a scheduler function, and 𝑅 a set of memory-fair relations. If 𝑝 admits a
consistent and fair non-terminating execution, then there exists a fair recurrence set for 𝑝 .

We spend the rest of this section making the above sketched definitions precise. In the next
section we will then formally prove the soundness theorem Theorem 4.3.

4.2 Definitions
As we have discussed above, we want to define recurrence sets in terms of execution prefixes,
that is, non-maximal, initialized runs with partial justifications. The reason why we call them
"prefixes" is because of how we imagine their construction. Let us explain this. Consider an infinite
execution 𝜀 = (𝜌, 𝑋𝐺) and a (finite) prefix 𝜌 ′ Ď 𝜌 of its run. Suppose we restrict 𝑋𝐺 to those
events appearing in 𝜌 ′ and call the resulting graph 𝑋𝐺 ′. We state three facts about the restricted
execution graph 𝑋𝐺 ′. First, it is a po-prefix of the original execution graph. Second, one can show
that 𝐸𝐺 (𝜌 ′).r ⊆ 𝑋𝐺 ′ .r for all base relations r besides coherence and read-from. Lastly, the restricted
coherence order 𝑋𝐺 ′ .co is still total per memory location and so it satisfies the properties of a
justification. However, the restricted read-from relation 𝑋𝐺 ′ .rf may fail to justify each read: a read
may have lost its matching write event. In fact, the existence of such unjustified reads cannot be
avoided by, say, only considering special prefixes of the infinite execution. Memory models that
allow for (po ∪ rf)-cycles may admit infinite consistent executions such that the restriction to any
finite prefix contains unjustified reads. Therefore, our notion of execution prefix will have to permit
such unjustified reads with the idea that they have to eventually get justified.

Definition 4.5 (Partial execution graph). Let 𝜌 be a run. We define a partial execution graph
𝑋𝐺 = (𝐸𝐺 (𝜌), rf, co) for 𝜌 like an execution graph for 𝜌 with the relaxation that not all read events
need to have an rf-edge. Read events without an rf-edge are called unjustified reads.

We remark that a partial execution graph with no unjustified reads is just a standard execution
graph. The notion of consistency of execution graphs naturally extends to partial execution graphs:
we simply evaluate𝑚𝑚 on the partial execution graph.

We now define the aforementioned prefix-completeness marker that we need to ensure memory
fairness in our recurrence sets.

Definition 4.6 (Prefix-completeness marker). Let 𝑅 ⊆ R be a set of relation names and 𝑋𝐺 a partial
execution graph. A prefix-completeness marker is a function 𝜋 : 𝑅 → P(𝑋𝐺.𝑋 ) that maps each
relation in 𝑅 to a subset of events in the partial execution graph. If 𝑥 ∈ 𝜋 (r), then we say that 𝑥 is
r-prefix-complete in 𝑋𝐺 .

Definition 4.7 (Execution prefix). An execution prefix is a triple 𝜀 = (𝜌, 𝑋𝐺, 𝜋) where 𝜌 is an
initialized run (possibly finite and non-maximal), 𝑋𝐺 is a partial execution graph over 𝜌 , and 𝜋 is a
prefix-completeness marker over 𝑋𝐺 . We denote the set of execution prefixes by ExecPre.

Notice that if 𝜀 = (𝜌,𝑋𝐺, 𝜋) is an execution prefix of a maximal run with all reads justified, we
can understand it as an execution by dropping 𝜋 . We often call such execution prefixes simply
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(complete) executions. The above correspondence highlights the fact that 𝜋 acts as a ghost state
that we only use for reasoning.

We extend the extension order Ď from runs to execution prefixes.

Definition 4.8 (Extension order on execution prefixes). We have (𝜌,𝑋𝐺, 𝜋) Ď (𝜌 ′, 𝑋𝐺 ′, 𝜋 ′) if the
following holds:

(i) 𝜌 Ď 𝜌 ′, i.e., 𝜌 is a prefix of 𝜌 ′.
(ii) 𝑋𝐺.rf (𝑋𝐺.co) agrees with 𝑋𝐺 ′ .rf (𝑋𝐺 ′ .co) on the common domain 𝑋𝐺.𝑋 ⊆ 𝑋𝐺 ′ .𝑋 .
(iii) 𝜋 ⊆ 𝜋 ′ holds point-wise, meaning 𝜋 ′ marks more events as prefix-complete than 𝜋 does.

The requirements on rf and co ensure that (i) the partial justifications stay unchanged along
extensions and that (ii) reads get justified as soon as possible, that is, unjustified reads can only be
justified by adding new writes but not by connecting them to already existing ones.
An extension from (𝜌, 𝑋𝐺, 𝜋) to (𝜌 ′, 𝑋𝐺 ′, 𝜋 ′) is called (memory-)fair if it does not change the

prefix of marked events, i.e., if 𝑥 ∈ 𝜋 (r) then prefix(𝑋𝐺.r, 𝑥) = prefix(𝑋𝐺 ′ .r, 𝑥). Otherwise it
is called unfair. We call it proper, if 𝜌 Ĺ 𝜌 ′. Consistent, if the resulting execution graph 𝑋𝐺 ′

is consistent. And 𝜎-progressing for a thread 𝑡 , if the underlying extension 𝜌 Ď 𝜌 ′ of runs is
𝜎-progressing for 𝑡 .

5 Soundness of Recurrence Sets & Lower Semi-continuity
In the previous section we have sketched the proof of Theorem 4.3, which iteratively constructs
a sequence of execution prefixes that we claimed to converge to an infinite, consistent, and fair
execution. The goal of this section is to prove that the limit execution does indeed satisfy all the
desired properties. Towards this, we analyze sequences of executions prefixes and their limits. This
requires us to talk about domain theory and continuity.

5.1 Domain-Theoretic Considerations
For each thread 𝑡 , the set of its runs forms an 𝜔-complete partial order (Runs𝑡 ,Ď), meaning that
every increasing sequence of thread runs has a limit. Conversely, every (infinite) thread run can
be expressed as the supremum of finite runs, i.e., the partial order of runs is algebraic. Similarly,
the partial order of program runs (Runs,Ď) also forms an algebraic 𝜔-complete partial order.2 Our
first goal is to show that execution prefixes also form an 𝜔-complete partial order (ExecPre,Ď).

Towards this, we need to make a basic assumption about the event graph function 𝐸𝐺 : Runs→
𝐸𝐺 (Runs), that is satisfied in practice. We assume that the function is Scott-continuous, meaning
that it is monotonic and limit-preserving. Monotonicity here means that if 𝜌 Ď 𝜌 ′, then 𝐸𝐺 (𝜌).r ⊆
𝐸𝐺 (𝜌 ′).r holds for all base relations r ∈ R𝐵 . Limit-preserving means that if (𝜌)𝑖∈N is an increasing
sequence of program runs with limit 𝜌 , then 𝐸𝐺 (𝜌) = ⋃

𝑖 𝐸𝐺 (𝜌𝑖 ). The assumption allows us to
prove the following technical lemma, which we use to prove the 𝜔-completeness of (ExecPre,Ď).

Lemma 5.1 (Extension implies set-based inclusion). Let (𝜌, 𝑋𝐺, 𝜋) Ď (𝜌 ′, 𝑋𝐺 ′, 𝜋 ′). Then
𝑋𝐺 ⊆ 𝑋𝐺 ′ holds component-wise, meaning that 𝑋𝐺.𝑋 ⊆ 𝑋𝐺 ′ .𝑋 and for all base relations r ∈ R𝐵

(including rf and co) we have 𝑋𝐺.r ⊆ 𝑋𝐺 ′ .r.

Proof. We have 𝑋𝐺.𝑋 = 𝐸𝐺 (𝜌).𝑋 ⊆ 𝐸𝐺 (𝜌 ′).𝑋 = 𝑋𝐺 ′ .𝑋 , because 𝜌 ′ contains all events
of 𝜌 . By monotonicity of the event graph function, we also have for all r ∈ R𝐵 \ {rf, co} that
𝑋𝐺.r = 𝐸𝐺 (𝜌).r ⊆ 𝐸𝐺 (𝜌 ′).r = 𝑋𝐺 ′ .r. For relations rf and co the inclusion follows directly from the
definition of the extension order. □

Lemma 5.2. (ExecPre,Ď) is an algebraic 𝜔-complete partial order.
2We assume the set of all threads to be countable.
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Proof. To show 𝜔-completeness, we need to show that increasing sequences of execution
prefixes converge to an execution prefix. Let (𝜌𝑖 , 𝑋𝐺𝑖 , 𝜋𝑖 )𝑖∈N be an increasing sequence.We construct
the limit execution (𝜌,𝑋𝐺, 𝜋 ) as follows. For the run and the prefix-completeness marker, we choose
𝜌 = lim𝑖 𝜌𝑖 and 𝜋 =

⋃
𝑖 𝜋𝑖 . For the execution graph 𝑋𝐺 , we rely on Theorem 5.1: the underlying

sequence of execution graphs (𝑋𝐺𝑖 )𝑖∈N is increasing w.r.t. subset inclusion and therefore has a set-
theoretic limit𝑋𝐺 =

⋃
𝑖 𝑋𝐺𝑖 = (

⋃
𝑖 𝐸𝐺 (𝜌𝑖 ),

⋃
𝑖 𝑋𝐺𝑖 .rf,

⋃
𝑖 𝑋𝐺𝑖 .co). By Scott-continuity of the event

graph function, we have 𝑋𝐺 = (𝐸𝐺 (𝜌),⋃𝑖 𝑋𝐺𝑖 .rf,
⋃

𝑖 𝑋𝐺𝑖 .co), meaning that 𝑋𝐺 is an execution
graph for 𝜌 . It is now easy to see that (𝜌, 𝑋𝐺, 𝜋) is an execution prefix and that it is the least upper
bound of the sequence and therefore its limit.

It is also easy to see that (ExecPre,Ď) is algebraic: every infinite execution prefix is the limit of
all its finite prefixes. □

We are interested in sequences of execution prefixes that converge to a complete execution
where all reads are justified.

Definition 5.3 (Justified sequences). An increasing sequence (𝜌𝑖 , 𝑋𝐺𝑖 , 𝜋𝑖 )𝑖∈N is justified if for every
𝑖 ∈ N and every unjustified read 𝑥 ∈ 𝑋𝐺𝑖 .𝑋 there exists 𝑗 > 𝑖 such that 𝑥 is justified in 𝑋𝐺 𝑗 .

Lemma 5.4 (Limits of justified seqences). The limit of a justified sequence has no unjustified
reads. Moreover, if the run of the limit is maximal, then the limit is a complete execution.

Proof. Immediate. □

5.2 Consistency
We now consider justified sequences of consistent execution prefixes and ask the question whether
their limits are always consistent. If this was not the case, then our definition of recurrence
sets would not be sound. This results in a requirement we impose on the memory model under
consideration, which we call consistency-closedness.

Definition 5.5 ((Weakly) consistent sequences and consistency-closedness). Let (𝜌𝑖 , 𝑋𝐺𝑖 , 𝜋)𝑖∈N be a
justified sequence. The sequence is called consistent if all of its elements are consistent with the
memory model. We say it is weakly consistent, if it contains a consistent subsequence. A memory
model𝑚𝑚 is consistency-closed if limits of weakly consistent sequences are consistent.

If the memorymodel, understood as a function from execution prefixes to a consistency judgment,
is a Scott-continuous function, then it is easily seen to be consistency-closed. This is certainly true
for positive memory models, those that do not use negation and difference operators, because the
positive operators and the axioms in CAT are Scott-continuous. Interestingly, it may also be true
for non-positive memory models. For example, the derived relation not-po = ¬po is non-positive
but still monotonic (and continuous): it cannot happen that a po-unrelated pair of events in an
execution prefix becomes related by an extension of that prefix.

Unfortunately, there are practical memory models where not all derived relations are monotoni-
cally derived. For example, the RISCV memory model defines a relation similar to

let hb = [R]; po; [R] \ (rf−1; rf) ,
which relates two reads in program order if they do not read from the same write. If we consider an
execution prefix with two such reads that are not yet justified, then they are related by hb. Now an
extension may add a new write that justifies both reads, causing them to become unrelated by hb.
Therefore, hb is not monotonically derived and, consequently, is not Scott-continuous. Fortunately,
the derivation of hb is still "sufficiently continuous" to be well behaved. Although for any pair
of events 𝑥 and 𝑦, hb(𝑥,𝑦) may change its value in the course of the execution, it will eventually
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stabilize. We capture this idea (and even more) using a more liberal idea of set-theoretic continuity
that does not require monotonicity, namely lower semi-continuity.

For arbitrary sequences of sets, in particular non-monotonic ones, we can define the limit inferior
as the set of elements that will, from some moment on, appear in all sets of the sequence. A
lower semi-continuous function will, in general, not preserve this limit inferior but instead over-
approximate it. To see how this is useful, consider the sequence of hb-relations we see along a
sequence of execution prefixes (𝜀)𝑖∈N. This sequence might not be monotonic and might even
oscillate, but it will have a limit inferior lim inf𝑖 hb(𝜀𝑖 ). Furthermore, this limit inferior will be
acyclic if the sequence of hb-relations contains infinitely many acyclic relations. Now, if hb is
derived in a lower semi-continuous manner, then this relation over-approximates the hb relation
of the limit execution which is of the form hb(lim inf𝑖 𝜀𝑖 ). This means that the hb-relation of the
limit execution has to be acyclic.

Definition 5.6 (Set-theoretic limit inferior). For any sequence of sets (𝐴𝑖 )𝑖∈N, the limit inferior
lim inf𝑖 𝐴𝑖 :=

⋃
𝑖

⋂
𝑗≥𝑖 𝐴𝑖 exists.

Definition 5.7 (Lower semi-continuous functions on power sets). Let 𝑓 : P(A) → P(B) be a function
between power set lattices (ordered by inclusion), and let (𝐴𝑖 )𝑖∈N be an arbitrary sequence in P(A).
We say that 𝑓 is lower semi-continuous if lim inf 𝑓 (𝐴𝑖 ) ≥ 𝑓 (lim inf 𝐴𝑖 ) holds for all such sequences.

We can extend the continuity definition to functions from 𝜔-complete partial orders such as the
extension-ordered execution prefixes into power sets.

Definition 5.8 (Lower semi-continuous functions into power sets). Let 𝑓 : A→ P(B) be a function
from an 𝜔-complete partial order into a power set lattice, and let (𝐴𝑖 )𝑖∈N be an 𝜔-chain (an
increasing sequence) in A. We define lim inf𝑖 𝐴𝑖 =

⊔
𝑖∈N𝐴𝑖 which allows us to reuse the definition

of lower semi-continuity as above.

The continuity definition can be applied to memory models when understood as functions
from execution prefixes to derived relations (which naturally live in a power set lattice) and the
consistency judgment. To be more precise, we can see each (derived) relation r as a function
r : 𝜀 ↦→ 𝜀.𝑋𝐺.r and talk about its continuity. Similarly, we can talk about the continuity of
the consistency judgment when seeing it as a function 𝑚𝑚 𝐽 : ExecPre → B and identifying
(B,≤) ≃ (P(1), ⊆) where 0 ≃ ∅ and 1 = {1}. We say that the memory model (as a whole) is lower
semi-continuous or monotonic, if all of its derived relations and its consistency judgment are. We
can now prove that if𝑚𝑚 𝐽 is lower semi-continuous then the memory model is consistency-closed.

Lemma 5.9 (Consistency-closed if lower semi-continuous). Amemorymodel𝑚𝑚 is consistency-
closed if the function𝑚𝑚 𝐽 is lower semi-continuous.

Proof. Let (𝜀𝑖 )𝑖∈N be a weakly consistent sequence of execution prefixes with limit 𝜀. By lower
semi-continuity we have 𝑚𝑚 𝐽 (𝜀) = 𝑚𝑚 𝐽 (lim inf𝑖 𝜀𝑖 ) ≤ lim inf𝑖𝑚𝑚 𝐽 (𝜀𝑖 ) = 0. The last equation
holds because the sequence is weakly consistent and, therefore, there is no point from which
onward𝑚𝑚 𝐽 (𝜀𝑖 ) takes only value 1. From𝑚𝑚 𝐽 (𝜀) ≤ 0 it follows that𝑚𝑚 𝐽 (𝜀) = 0 and so the limit
execution 𝜀 is consistent. □

There are memory models that are not lower semi-continuous, but their construction requires a
particular alternation between negative operators (negation and difference) and projective operators
(composition and domain/range projections). For example, consider the memory model given by

empty(¬((𝑋 × 𝑋 );¬dom(po); (𝑋 × 𝑋 ))) ,
which is satisfied if and only if an execution has po-maximal elements. This property can only fail
for infinite executions (if we exclude the existence of special initial writes). Now, if we considered
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such an inconsistent infinite execution, then the set of its finite prefixes would yield a (consistent)
recurrence set that witnesses a non-terminating but inconsistent execution and thus is unsound.
Fortunately, as far as we know, no practical memory model makes use of this alternation pattern (the
use of negation is quite limited in practical models) and therefore they are all lower semi-continuous
and hence consistency-closed. This explains Claim 1.

5.3 Memory Fairness
Let us now consider memory fairness.

Definition 5.10 (Memory-fair sequences). Let𝑚𝑚 be a memory model and let 𝑅 ⊆ R be a subset
of the relation names of the memory model. A justified sequence (𝜌𝑖 , 𝑋𝐺𝑖 , 𝜋𝑖 )𝑖∈N is 𝑅-memory-fair
if (i) for every relation r ∈ 𝑅, every 𝑖 ∈ N, and every 𝑥 ∈ 𝑋𝐺𝑖 .𝑋 there exists some 𝑗 ≥ 𝑖 so
that 𝑥 ∈ 𝜋 𝑗 (r), and (ii) every extension in the sequence is memory-fair, i.e., respects the prefix-
completeness marker 𝜋𝑖 .

Similar to limits of consistent sequences, the limits of memory-fair sequences are not guaranteed
to be memory-fair for arbitrary memory models. Fortunately, lower semi-continuity is also a
sufficient condition here. More precisely, we only need that for any event 𝑥 and any memory-fair
relation r, the r-prefix function 𝜀 ↦→ prefix(𝜀.𝑋𝐺.r, 𝑥) is lower semi-continuous. This requirement
is always satisfied if relation r itself is lower semi-continuous.

Lemma 5.11 (Limits of memory-fair seqences are memory-fair). Let 𝑚𝑚 be a memory
model and 𝑅 ⊆ R be a subset of its relation names. Further, assume that all relations in 𝑅 are lower
semi-continuous. Then limits of 𝑅-memory-fair sequences are 𝑅-memory-fair.

Proof. Let (𝜌𝑖 , 𝑋𝐺𝑖 , 𝜋𝑖 )𝑖∈N be an𝑅-memory-fair sequence and let (𝜌,𝑋𝐺, 𝜋) be its limit.We show
that for all r ∈ 𝑅 and all 𝑥 ∈ 𝑋𝐺.𝑋 , prefix(𝑋𝐺.r, 𝑥) is finite. The function 𝜀 ↦→ prefix(𝜀.𝑋𝐺.r, 𝑥) is
lower semi-continuous. Therefore, prefix(𝑋𝐺.r, 𝑥) ≤ lim inf𝑖 prefix(𝑋𝐺𝑖 .r, 𝑥) = prefix(𝑋𝐺 𝑗 .r, 𝑥)
for some 𝑗 . The inequality holds by lower semi-continuity. The equation holds by memory-fairness
of the sequence which guarantees that the r-prefix of 𝑥 will eventually stabilize at some point 𝑗 .
Since prefix(𝑋𝐺 𝑗 .r, 𝑥) is trivially finite, prefix(𝑋𝐺.r, 𝑥) is also finite as desired. □

5.4 Scheduler Fairness
It remains to consider scheduler fairness. Unlike memory fairness, which is defined on the execution
graphs, scheduler fairness is defined on the infinite runs of the program. Our first step is to generalize
the notion of scheduler fairness to infinite sequences of finite runs that approximate an infinite run.

Definition 5.12 (𝜎-fair sequences). Let 𝜎 be a scheduler fairness function. An increasing sequence
of finite runs (𝜌𝑖 )𝑖∈N with infinite limit is called 𝜎-fair if for every 𝑖 and for every non-terminated
thread 𝑡 ∈ 𝜎 (𝜌𝑖 ) there is 𝑗 > 𝑖 such that 𝜌𝑖 Ď 𝜌 𝑗 is 𝜎-progressing for 𝑡 . This notion naturally lifts
to sequences of execution prefixes.

Lemma 5.13. Limits of 𝜎-fair sequences are 𝜎-fair.

To prove this lemma, we again rely on lower semi-continuity. Indeed, every scheduler function
𝜎 is lower semi-continuous which follows directly from the way we have defined 𝜎 on infinite runs
in Section 3.1.

Proof. Let (𝜌𝑖 )𝑖∈N be a 𝜎-fair sequence with infinite limit 𝜌 . We show that 𝜌 is 𝜎-fair, meaning
for each thread 𝑡 ∈ 𝜎 (𝜌), we have that 𝜌 (𝑡) is a maximal run of 𝑡 . If 𝑡 has terminated, then it
is maximal, so we assume that 𝑡 has not terminated. By lower semi-continuity of the scheduler
function 𝜎 , we have 𝜎 (𝜌) ⊆ lim inf𝑖 𝜎 (𝜌𝑖 ), and therefore 𝑡 ∈ 𝜎 (𝜌) implies that there is 𝑖0 so that
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for all 𝑖 ≥ 𝑖0 we have 𝑡 ∈ 𝜎 (𝜌𝑖 ). Scheduler fairness of the sequence says that for each of these
𝑖 ≥ 𝑖0 there must be some 𝑗 > 𝑖 so that the extension 𝜌𝑖 Ď 𝜌 𝑗 is 𝜎-progressing 𝑡 . Due to 𝑗 ≥ 𝑖0
we know that 𝑡 ∈ 𝜎 (𝜌 𝑗 ), meaning the extension 𝜌𝑖 Ď 𝜌 𝑗 must extend the run of 𝑡 in order to be
𝜎-progressing. Since there are infinitely many such 𝑖 ≥ 𝑖0, the thread must get extended infinitely
often. It follows that the thread’s run is infinite and thus maximal as desired. □

We are now ready to prove Theorem 4.3, the soundness of recurrence sets.

Proof of Theorem 4.3. Let Rec be a fair recurrence set with scheduler fairness given by 𝜎 and
memory fairness given by 𝑅. Let 𝜀 ∈ Rec be an execution prefix. We iteratively construct an infinite,
justified, and fair sequence starting from 𝜀. Let 𝜀′ denote the execution we have constructed so far.
Let (𝑖, 𝑗) denote the 𝑖-th event of the 𝑗-th thread. We enumerate through all pairs (𝑖, 𝑗) and perform
four steps. First, we extend the 𝑗-th thread if it is in 𝜎 (𝜀′) and has not yet terminated using property
(iii). Then, if the 𝑖-th event is an unjustified read, we extend the execution prefix to justify this read
using property (ii). Lastly, for each relation r ∈ 𝑅, we use property (iv) to extend the execution to
the point where the 𝑖-th event becomes r-prefix-complete. By property (i), we extend once more to
obtain a consistent execution prefix. By property (v), all extensions we do are memory-fair. It is
important to note that we perform these steps one after another. Fair recurrence sets give us the
guarantee that each step can be performed. It is only a consequence of this construction that there
is an extension that achieves all properties needed.
It is easy to see that the constructed sequence of execution prefixes is justified and weakly

consistent and so converges to a complete and consistent execution. Notice that this limit execution
must be infinite, i.e., non-terminating, because we apply property (i) infinitely often which is
guaranteed to extend the execution sequence properly. Furthermore, by construction the sequence
is also 𝑅-memory-fair and 𝜎-fair, and so converges to a 𝑅-fair and 𝜎-fair execution, using the
lemmas established above. This shows that the sequence of execution prefixes converges to an
infinite, fair, and consistent execution. □

We remark that the soundness proof does not require lower semi-continuity of the whole memory
model, but only of its consistency judgment and those relations that are required to be memory-fair.
This means we can slightly weaken the requirements of Theorem 4.3.

6 Abstract Recurrence Sets
Recurrence sets, as defined so far, are infinite in size and thus cannot be represented explicitly. The
goal of this section is to define abstract recurrence sets that can yield finite representations for use
in automatic verification. Abstract recurrence sets will properly generalize classical state-based
recurrence sets, and finite instances will give rise to an execution-based variant of lassos.
Recall that in Section 4 we have argued that classical state-based recurrence sets can be equiv-

alently reformulated as run-based recurrence sets which we then used as a basis to develop our
execution-based recurrence sets. The reason for this equivalence is simple: we can extend each
state to the set of runs leading to that state, and conversely, we can reduce each run to the state it
ends in. Notice how the state here acts as an abstract element that represents a set of runs. With
this perspective of "state = set of runs", one may ask how a state transition 𝑠 → 𝑠′ relates to the
underlying sets of runs represented by 𝑠 and 𝑠′. One might expect that transition 𝑠 → 𝑠′ just
appends 𝑠′ to all runs represented by 𝑠 , but this is not quite true: 𝑠′ also represents runs that do not
visit 𝑠 immediately before 𝑠′. In other words, 𝑠 → 𝑠′ does more than just extending the underlying
runs by 𝑠′, it also forgets the past 𝑠 that lead to 𝑠′. We can explain this with a two-step process by
thinking of states as (particularly small) infixes of a run: 𝑠 → 𝑠′ amounts to first extending the run
𝑠 Ď 𝑠 .𝑠′ and then abstracting away the past 𝑠 .𝑠′ ⊆# 𝑠′. The combined relation Ď# = Ď; ⊆#, which
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Fig. 3. Concrete execution prefix (top) and a possible abstraction (bottom). The suggested extension on the

execution prefix can be simulated on the abstract execution prefix. The dashed rf-edge shows an alternative

extension which is consistent with the concrete past but inconsistent with the abstracted past and, hence,

cannot be simulated in the abstract.

we call the abstract extension order, then allows us to move from one infix to another like a "sliding
window": Ď extends the window to the right, ⊆# shrinks it on the left. For abstract recurrence
sets, the abstract extension order Ď# will play the role that state transitions→ play for classical
recurrence sets. The purpose of an abstract recurrence set is now to guarantee us that we can use
Ď# to trace out an infinite execution in such a way that that the infinite execution that results as
the limit of this process is fair and consistent.
The key difference between the execution-based setting and the state-based setting will be in

how we abstract the past. In the state-based setting, the future of a run is independent of the past
of a run: we can forget the past and just remember the most recent state. However, this simple
argument fails for execution-based reasoning because the future of a run has to be consistent and
memory-fair also with the past of the run. For this reason, ⊆# cannot just forget the past but needs
to retain some over-approximate information about it. Similarly, whenever we use Ď to extend an
execution infix, we need to ensure that this extension is consistent and memory-fair not only with
the infix but also with all possible pasts. Only then we can guarantee that the infinite execution we
trace out via Ď# = ⊆#;Ď will be consistent and memory-fair.

The idea of the abstraction is to collapse a po-prefix of the execution graph into a single abstract
event •. Edges between the prefix and the infix will be retained as abstract edges of the form r(•, 𝑥)
or r(𝑥, •). The resulting abstract execution graph is an over-approximation of the past that lead to
the infix, and if we ensure that extensions are consistent with this over-approximation, then they
will be consistent with all matching pasts. Actually, to make this simple argument hold true, we
will restrict ourselves to monotonic memory models. That being said, we believe a more refined
reasoning can be used to also handle non-monotonic memory models. Lastly, our abstraction cannot
avoid collapsing write events that will be read from in future extensions. To handle this, we need
to remember the values of co-last write events in a (prefix) memory state 𝜇 when collapsing them.
Figure 3 illustrates the abstraction. At the top we have a concrete execution prefix 𝜀, divided

into a past and an infix, and a consistent extension of it. The bottom part shows how we abstract
the concrete past by collapsing its events into •, keeping the edges, and recording the values of
co-maximal writes among the collapsed events in 𝜇. On the resulting abstract execution prefix, we
can perform the same consistent extension as in the concrete. To see why, consider the highlighted
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Fig. 4. An abstract recurrence set for the example program from Figure 1 (with coherence edges omitted).

There is a repeating abstract execution (top-right and bottom-right) that is related to itself by Ď#
, meaning

we have found a lasso.

read event R(x,2). We can justify its value from the memory state 𝜇 and the consistency of its read-
from edge, intuitively, by the fact that it happens strictly after all events in the past. Now consider
an alternative extension given by the dashed rf-edge of the read. This extension is consistent in the
concrete but it implies a reordering of the read with the highlighted write from the past, which is
witnessed by an fr-edge where fr = rf

−1; co. We cannot justify the consistency of this reordering in
the abstract, because it would induce a (po ∪ fr)-cycle which is prohibited in most memory models.

As the example suggests, the (concrete) extension order Ď on abstract execution prefixes works
almost identical to the extension order on concrete execution prefixes, which is the reason why
we reuse the same symbol Ď. The key difference is that we need to be more careful when arguing
about consistency and memory fairness of extensions as they need to be consistent and memory-
fair w.r.t. all possible pasts. Let us now demonstrate on an example how the three orders, ⊆#,
Ď, and the resulting Ď# interact. Figure 4 shows four abstract executions (with coherence edges
omitted) related to the initial example from Figure 1. The top-left abstract execution is essentially
an execution prefix of the program with only the initial events abstracted away. We collapse the
part that is boxed in orange using ⊆#, which gives us the top-right abstract execution. Then, we
perform a (concrete) extension Ď that appends to each thread the events of a single loop iteration
of that thread’s loop, giving us the bottom-left abstract execution. We then abstract the part that is
boxed in blue using ⊆# again, which leads to the bottom-right abstract execution. We observe that
this execution looks identical to the top-right one. We claim that those abstract executions form an
abstract recurrence set that gives rise to a lasso. We will come back to this in a moment.
We will now sketch the remaining definitions that we need to formulate abstract recurrence

sets and state our main theorem. The domain of abstract execution prefixes AbsExecPre is given
by elements of the shape 𝜉 = (𝜌, 𝑋𝐺, 𝜋, 𝑝𝑟𝑒#), where the first three components form the concrete
infix and the last component represents the abstract past. The concrete infix is defined almost
like a concrete execution prefix with the following differences: 𝜌 need not be initialized (this is
why it is an infix) and 𝑋𝐺 may have so-called prefix-justified read events whose corresponding
write event is in the abstract past. We often write 𝜉 = (𝜀, 𝑝𝑟𝑒#), highlighting the fact that the first
three components resemble a concrete execution. The abstract past has the form 𝑝𝑟𝑒# = (𝜇, 𝑋𝐺#)
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consisting of the memory state 𝜇 and the abstract event • and its edges captured in 𝑋𝐺#. Abstract
execution prefixes are related to concrete execution prefixes by a concretization function 𝛾 that
intuitively undoes the collapsing operation shown in Figure 3.

Definition 6.1 (Abstract recurrence sets). Let 𝑝 be a program,𝑚𝑚 a memory model, 𝜎 a scheduler
fairness function, and 𝑅 a set of relations. An abstract recurrence set ARec is a non-empty set of
abstract execution prefixes of the program 𝑝 satisfying the following properties for each 𝜉 ∈ ARec:
(1) 𝜉 has a proper abstract extension 𝜉 Ď# 𝜉 ′ ∈ ARec.
(2) For each non-terminated thread 𝑡 ∈ 𝜎 (𝜉), there is an extension that 𝜎-progresses 𝑡 .
(3) For each event 𝑥 ∈ 𝜉 .𝑋 , there is an extension 𝜉 Ď# 𝜉 ′ ∈ ARec that abstracts away 𝑥 .
(4) All of the above extensions are memory-fair.
(5) All of the above extensions are consistent.
(6) There exists 𝜉 ′ ∈ ARec such that 𝛾 (𝜉 ′) contains a consistent execution prefix.

Let us explain the main differences between the definitions of abstract recurrence sets and
concrete recurrence sets. Property (3) formulates a new requirement that every event gets abstracted
away eventually. Together with the fact that we will not allow for the abstraction of unjustified reads
and events that are not marked as prefix-complete, this property implies properties (ii) and (iv) of
concrete recurrence sets. Property (5) now requires consistency of all extensions we perform. This
stricter requirement is necessary due to the over-approximate nature of the abstraction. Property (6)
resembles the reachability requirement of state-based recurrence sets: we need to find a consistent
execution prefix that reaches some abstract execution in the recurrence set. Property (2) about
scheduler fairness remains unchanged because it is determined by the infix that we keep track of.

Theorem 6.2 (Abstract recurrence sets are sound). Let ARec be an abstract recurrence set
for program 𝑝 and monotonic memory model𝑚𝑚. Then there is a fair and non-terminating execution
of 𝑝 that is consistent with𝑚𝑚.

We can now show that the three different abstract execution prefixes of Figure 4 indeed form
an abstract recurrence set. Property (1) is satisfied because all executions have proper extensions,
including the last one which can extend to the third one and even to itself. Property (2) is satisfied
for all possible schedulers because all threads are progressing. Property (3) is satisfied because
every event gets abstracted away eventually. To see this, notice that the two marked events in
the top-right execution get abstracted away when extending to itself (bottom-right) along the
bottom-left execution. Properties (4) and (5) also hold, but we will later see why exactly that is.
Lastly, Property (6) holds because the first execution is clearly reachable: its concretization just
adds two initial write events for 𝑥 = 0 and 𝑦 = 0, which yields an execution prefix of the program.
The attentive reader might have noticed that the top-right abstract execution already forms a

singleton abstract recurrence set by itself. Precisely such a singleton recurrence set is what we call
a lasso. It is easy to see that every finite abstract recurrence set must contain a lasso.

We spend the rest of this section making the formalism precise.

6.1 Definitions and Soundness
Definition 6.3 (Abstract prefix). An abstract prefix 𝑝𝑟𝑒# = (𝜇, 𝑋𝐺#) for a concrete infix 𝜀 =

(𝜌,𝑋𝐺, 𝜋) is a tuple consisting of a (prefix) memory state 𝜇 and an abstract execution graph 𝑋𝐺#.
The memory state 𝜇 : Loc→ Zmaps each location 𝑙 ∈ Loc to a value. The abstract execution graph
𝑋𝐺# consists of a single abstract event • and for each relation name r ∈ R𝐵 a set of edges between
• and 𝑋𝐺.𝑋 , that is, edges of the form r(•, •), r(•, 𝑥), and r(𝑥, •).
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In the following, we will omit the word "prefix" and simply talk about concrete executions and
abstract executions. We define the abstraction order ⊆# ⊆ AbsExecPre×AbsExecPre via a collapsing
operation that collapses a prefix into the abstract event •.
Definition 6.4 (Collapsing prefixes). Let 𝜉 be an abstract execution and let 𝜌 ′ be a prefix of 𝜉 .𝜌 .

Let 𝑋 = Ev(𝜌 ′) be the set of events in the prefix. We construct a new abstract execution 𝜉 ′ from 𝜉

as follows. We collapse 𝑋 into the abstract prefix by mapping those events to • while preserving
edges (homomorphic mapping). This yields 𝜉 ′ .𝑋𝐺#. If we collapse a store𝑤 (𝑙, 𝑣) that is co-maximal
among the collapsed events and the past, i.e., there are no co(𝑤,𝑋 ∪ {•})-edges, then we update
the prefix memory state to 𝜉 ′ .𝜇 [𝑙 ← 𝑣].
Definition 6.5 (Abstraction order). We have 𝜉 ⊆# 𝜉 ′ if the former can be collapsed to an 𝜉 ′′ such

that 𝜉 ′′ .𝜀 = 𝜉 ′ .𝜀, 𝜉 ′′ .𝜇 = 𝜉 ′ .𝜇, and for all base relation r ∈ R𝐵 we have 𝜉 ′′ .𝑋𝐺#.r ⊆ 𝜉 ′ .𝑋𝐺#.r. For co
and rf we require the inclusion to be satisfied with equality. Furthermore, we disallow collapsing of
unjustified reads and events not marked as prefix-complete w.r.t. every memory-fair relation.

We will see in a moment why the relaxation to subset inclusion of the abstract execution graphs
is helpful, and why we require exactness for coherence.
For any concrete execution 𝜀 ∈ ExecPre, we define a canonical abstract execution 𝜉 (𝜀) by

collapsing all initialization events in 𝜀. This gives rise to the concretization function
𝛾 : AbsExecPre→ P(ExecPre), 𝛾 (𝜉) = {𝜀 ∈ ExecPre | 𝜉 (𝜀) ⊆# 𝜉} .

The concretization essentially undoes the collapsing operation, but it does not need to do so exactly:
abstract edges (other than co and rf) like po(•, 𝑥) are treated like upper bounds, meaning they do
not need to be witnessed in the concretization. In other words, the abstract past represents an
upper bound (a worst-case) of the events and relations of the past. However, it is important that co
is treated exactly in order to justify our collapsing operation: if we have an edge co(𝑥, •) and 𝑥

gets collapsed into •, then we know that, within the resulting past, 𝑥 must have a co-successor and,
hence, cannot be co-maximal inside the past. This is why we do not need to update 𝜇 in this case.
From the definition of the concretization, it is easy to see that 𝜉 ⊆# 𝜉 ′ implies 𝛾 (𝜉) ⊆ 𝛾 (𝜉 ′),

meaning that more abstract executions represent larger sets of concrete executions. This is why we
denote the abstraction order ⊆# by the set inclusion symbol. Also notice that the concretization
will contain, in general, many inconsistent executions. This is no problem because all we need to
ensure is the existence of a single consistent execution, which our abstract recurrence sets will do.
We now define the extension order Ď on abstract executions, i.e., how we extend the concrete

infix of abstract executions. The idea of an extension 𝜉 Ď 𝜉 ′ in the abstract is that it can be replayed
on all underlying concrete executions, i.e., it witnesses the existence of (canonical) extensions in
the concrete. More precisely, on each underlying concrete execution 𝜀 ∈ 𝛾 (𝜉) we can append the
events (𝜉 ′ .𝑋 \ 𝜉 .𝑋 ) and add rf and co-edges in a canonical way to obtain an execution 𝜀′ ∈ 𝛾 (𝜉 ′).

Naively, we would like to define (𝜀, 𝑝𝑟𝑒#) Ď (𝜀′, 𝑝𝑟𝑒′#) iff 𝜀 Ď 𝜀′ and 𝑝𝑟𝑒# = 𝑝𝑟𝑒′#. However, we
need to record edges between newly appended events and the abstract event •, meaning we have to
update 𝑝𝑟𝑒#. We sketch this update for the common base relations. If we append a prefix-justified
read 𝑟 = R(𝑙, 𝑣), then we record rf(•, 𝑟 ) and require that the observed value matches with the prefix
memory state, i.e., 𝑣 = 𝜇 (𝑙). This abstract edge can be realized in every concretization of the past,
since the concretization will contain a write event with value 𝜇 (𝑙). If we append a store𝑤 then we
record co(•,𝑤) which is realized by the initialization events that are always initial in the coherence
order. We will never record co(𝑤, •) because this edge might not be realizable: if the abstract past
consists of only the initialization writes then𝑤 cannot possibly be co-before any of them. For any
appended event 𝑥 , we unconditionally record po(•, 𝑥). We can do so because of the aforementioned
relaxation to upper bounds: the po-edge does not have to be witnessed. We do similar updates for
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all other existing base relations r ∈ R𝐵 . Theoretically, we could always record r(•, 𝑥) and r(𝑥, •),
but this will be too imprecise for our use-case.

Lemma 6.6 (Soundness of extensions of abstract executions). If 𝜉 Ď 𝜉 ′, then for all 𝜀 ∈ 𝛾 (𝜉)
there exists a canonical extension 𝜀 Ď 𝜀′ ∈ 𝛾 (𝜉 ′).

Based on the above correspondence, we can directly lift the concepts of proper, scheduler-
progressing, and memory-fair extensions from executions to abstract executions: 𝜉 Ď 𝜉 ′ is said to
be proper (scheduler-progressing/memory-fair) if for all 𝜀 ∈ 𝛾 (𝜉) its canonical extension is proper
(scheduler-progressing/memory-fair). For consistency, we relativize the lifting and say that 𝜉 Ď 𝜉 ′

is consistent if for all consistent 𝜀 ∈ 𝛾 (𝜉) its canonical extension is again consistent. All of the above
notions also apply to abstract extensions (recall that Ď# = Ď; ⊆#): 𝜉 Ď# 𝜉 ′ has one of the above
properties if 𝜉 Ď 𝜉 ′′ ⊆# 𝜉 ′ and 𝜉 Ď 𝜉 ′′ has said property. We are ready to proof our main theorem.

Proof of Theorem 6.2. Let ARec be an abstract recurrence set. We show that Rec := {𝜀 ∈⋃
𝛾 (ARec) | 𝜀 is consistent} is a fair recurrence set. By property (6), we have Rec ≠ ∅. Further,

observe that all executions in Rec are consistent. Now, let 𝜀 ∈ 𝛾 (𝜉) ⊆ Rec be a concrete execution
prefix in the set, then we need to show that it has extensions satisfying properties (i)-(iv).
By property (1) together with property (5) there is a proper and consistent abstract extension

𝜉 Ď# 𝜉 ′ ∈ ARec, meaning that 𝜉 Ď 𝜉 ′′ ⊆# 𝜉 ′ and 𝜉 Ď 𝜉 ′′ is proper and consistent. By Theorem 6.6,
there exists a canonical extension 𝜀 Ď 𝜀′ ∈ 𝛾 (𝜉 ′) that is proper and consistent. It follows that 𝜀′
is consistent and hence contained in Rec as desired. To show property (ii), let 𝑥 be an unjustified
read in 𝜀.𝑋 . By properties (3) and (5) there is a consistent extension 𝜉 Ď# 𝜉 ′′ that abstracts away 𝑥 ,
but we cannot abstract unjustified reads, meaning this extension must also justify the read before
abstracting it. Again, by Theorem 6.6, there is a consistent extension 𝜀 Ď 𝜀′′ ∈ 𝛾 (𝜉 ′′) that justifies
the read. Observe that 𝜀′′ is consistent and so contained in Rec. By a similar argument, Property (iv)
holds because for every event that is not marked as prefix-complete there is an extension that
abstracts away this event, but we only allow abstraction of marked events, therefore that extension
must mark the event as prefix-complete. Property (iii) immediately follows from property (2). Lastly,
property (v) follows from property (4). □

6.2 Checking Properties of Abstract Extensions Algorithmically
It remains to show how we can algorithmically check that abstract extensions satisfy the properties
required by abstract recurrence sets without explicitly reasoning over all underlying concrete
executions. This is obvious for properness and scheduler-progress, but it is not obvious for memory
fairness and consistency. We focus on memory fairness first.
Consider an extension 𝜉 Ď 𝜉 ′ and memory fairness with respect to fr = rf

−1; co. The basic idea
is to ensure that the extension introduces no fr-paths from newly added events into the abstract
event •.3 The naive way to ensure this is as follows: we combine 𝜉 ′ .𝑋𝐺 and 𝜉 ′ .𝑋𝐺# into a single
execution graph and compute fr over it. Then we check if some newly added event has an fr-edge
into •. However, this will (almost) always be the case if we add a prefix-justified read 𝑟 , because we
will have rf(•, 𝑟 ) and therefore rf−1 (𝑟, •), but also co(•, •). Those two edges combine to fr(𝑟, •).

We illustrate this issue in Figure 5 which elaborates on the extension performed in Figure 4.
The top execution corresponds to the third (bottom-left) execution of Figure 4 but extended
with some previously omitted co-edges and their induced fr-edges. Among the newly appended
events, R(y,0) has a fr-edge that goes into the past seemingly violating memory fairness (and
consistency). However, that fr-edge is not realized in the corresponding canonical extension of
any underlying concrete execution. The reason is that we justify R(y,0) by letting it read from the
3We assume that within the concrete infix no event is marked as prefix-complete.
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y=0
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Ď
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W(x,0)

W(x,1) R(y,0) W(x,0) W(x,1)

R(x,1) R(x,1)
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Fig. 5. Checking the memory fairness and consistency of the Ď-extension from Figure 4. The top execution

graph has problematic fr-edges that disappear after unfolding the past (bottom execution graph). The po-edges

of the unfolded past mean that every event inside the past has such an edge.

co-maximal write in the past rather than any write. That write has no co-successors within the
past. Consequently, no fr-edge from 𝑟 = R(y,0) leads into the past; the abstract fr(𝑟, •)-edge is a
spurious over-approximation. A similar argument can be made to show that the other fr-edge of
R(y,0) is spurious as well. Although this edge might not violate memory fairness, it would certainly
violate consistency in most memory models.

We recover from this imprecision by partially unfolding/concretizing the abstract past on demand:
for each memory location 𝑙 ∈ Loc accessed by a newly added prefix-justified read 𝑟 , we add a new
write event𝑤 =W(𝑙, 𝜇 (𝑙)) that represents the co-maximal write of the past and let 𝑟 read from it,
i.e., we realize the abstract rf(•, 𝑟 )-edge by rf(𝑤, 𝑟 ). The new write events have the same edges as •
except for co-edges and rf-edges, meaning that with respect to all other edges • and the new events
behave equivalently. Notice that prefix-justified reads that existed already in the non-extended
execution 𝜉 may end up having two rf-edges, one from the abstract event and one from the new
write event. The reason is that we do not know if they read co-maximal from the past 4

Coming back to our example, the unfolding can be seen in the bottom of Figure 5. Notice how
the problematic fr-edges are gone after unfolding: the extension is memory-fair and consistent.

In general, there is another problem we have to consider: what if the newly added events do not
themselves have fr-edges into the past but cause already existing events to get new such edges?
Indeed, suppose that we added a new write event𝑤 that we use to justify a yet-unjustified read 𝑟 in
the infix with edge rf(𝑤, 𝑟 ), and for the sake of argument suppose that we also added a co(𝑤, •)-edge
(we do not allow this in our definitions), then we would end up adding an fr(𝑟, •)-edge from an
already existing event. We cannot permit this. Even worse, in the general case of r-memory-fairness,
we might add an r-edge from infix into the past that already existed beforehand, i.e., we add a new
witness for an already existing abstract edge. We cannot permit this either. What this means is
that we need to reason not only about the edges of the combined graph but also how they can
be derived: we cannot admit a derivation of an r-edge into the past that involves a newly added
event/edge of the extension.

Fortunately, we can check this algorithmically by instrumenting the memory model𝑚𝑚 to keep
track of how it derives edges, in particular, whether a derivation involves a newly added event.

4Only if the value of the read does not match with 𝜇, we know that it cannot have read co-maximal from the past.
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We use the same trick to check consistency: we evaluate the instrumented memory model on the
combined and partially unfolded execution graph and check if there is a consistency violation
involving a new event. The idea of the instrumentation is to collect the newly appended events
𝜉 ′ .𝑋 \ 𝜉 .𝑋 into a new base set S and define for each relation r ∈ R an instrumented version r

′ that
captures the subset of r-edges that have at least one derivation involving some event from S. The
instrumentation is defined inductively along the structure of the CAT language:

br
′ = [S]; br ∪ br; [S]

bs
′ = bs ∩ S

(a ∪ b)′ = a
′ ∪ b′

(a ∩ b)′ = (a′ ∩ b) ∪ (a ∩ b′)
(a \ b)′ = (a′ \ b) ∪ (a \ b′)

(a; b)′ = a
′; b ∪ a; b′

(a+)′ = a
∗; a′; a∗

(a−1)′ = (a′)−1

[a]′ = [a′]
(a × b)′ = (a′ × b) ∪ (a × b′)

empty(r)′ = empty(r′)
irreflexive(r)′ = irreflexive(r′)

acyclic(r)′ = irreflexive((r+)′)
(let rn := r)′ = let rn := r ∧ let rn′ := r

′

(𝑚𝑚 ∧𝑚𝑚)′ =𝑚𝑚′ ∧𝑚𝑚′

Lemma 6.7. Let 𝜉 Ď 𝜉 ′ be an extension, 𝐺 the corresponding combined and partially unfolded
execution graph of 𝜉 ′, and𝑚𝑚′ the instrumented memory model as above. If𝐺 is consistent with𝑚𝑚′,
then 𝜉 Ď 𝜉 ′ is a consistent extension. If 𝐺 has no (r∗; r′; r∗)-edges into events 𝜋 (r) ∪ {•}, then 𝜉 Ď 𝜉 ′

is r-memory-fair.

We need to address one important point to justify the above construction. Notice that none of
the above arguments would suffice if an extension could enlarge the base relations between events
in the past, because that could cause consistency and/or fairness violations that we cannot observe
in the abstraction. The assumption that base relations are derived monotonically from the run is
not sufficient to exclude this case. Fortunately, all practical base relations r satisfy a much stronger
property: (𝑥,𝑦) ∈ 𝜀′ .r iff (𝑥,𝑦) ∈ 𝜀.r for all 𝜀 Ď 𝜀′ with 𝑥,𝑦 ∈ 𝜀.𝑋 . What this means is that the
base relations that hold between two events are determined the first time they appear together
in the execution, and will not change in any extension of the execution. This property has a few
nice consequences: (i) base relations within the past and between existing events are unaffected
by extensions and (ii) the negation of base relations is monotonic. Point (i) is what makes our
arguments sound: it guarantees that all memory fairness and consistency violations an extension
introduces must involve the newly added events. Point (ii) means that, for example, po and its
negation ¬po grow monotonically along increasing execution sequences. From this it follows that
most memory models, even those relying on negations and differences, are in fact monotonic.
We make a few final observations and remarks about abstract recurrence sets. First, our con-

struction guarantees to never add co-edges into the past, and therefore it can only witness co-fair
non-termination. Similarly, for each acyclicity constraint acyclic(r), we often incidentally guarantee
r-fairness as well. The reason is that r-paths into the abstract past are almost always prohibited by
the consistency checks we perform. Consequently, the abstraction is only suitable when assuming
memory fairness properties that align with the ordering constraints of the memory model. That
being said, we believe a less aggressive abstraction of the past can be used to also handle weaker
notions of memory fairness.

Secondly, the abstraction we presented is a pure shape abstraction: we abstract nodes and edges
but keep data values concrete. It is easy to imagine that this can be combined with data abstractions.
For example, data values in events and/or the past could be described symbolically possibly by
predicates like 𝑥 > 0. By doing so, we might obtain finite representations even for non-terminating
executions that do not have a strictly repeating data flow.

6.3 Recovering Classical State-Based Recurrence Sets
We now demonstrate how abstract recurrence sets properly generalize state-based ones. Consider
an abstract execution 𝜉 = (𝜌, 𝑋𝐺, 𝜋, 𝜇, 𝑋𝐺#) whose concrete infix is minimal, meaning 𝜌 = 𝑐 is
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a single configuration (local state per thread) without any transitions, 𝑋𝐺 and 𝜋 are empty, and
𝑋𝐺# is just a single abstract event • with self-loops. Therefore, the minimal abstract execution is
effectively represented by a tuple 𝜎 = (𝑐, 𝜇), which is precisely a classical state in the interleaving
semantics of concurrent programs (local state per thread 𝑐 + shared global state 𝜇). Over these
"states" (minimal abstract executions), we can consider a subset of abstract extensions that append
a single event and immediately abstract it away to mimic classical single-step transitions. Write
events appended in this way update 𝜇 with the value of the write. Read events appended this way
always read the most recent value from 𝜇 and update the local state in 𝑐 accordingly.
Now consider a set of such states with an unfair scheduler and the sequential consistency (SC)

memory model defined by acyclic(hb) and let hb ≔ po ∪ rf ∪ co ∪ fr. We check under what
conditions this set forms an abstract recurrence sets. Property (2) is trivially satisfied by the unfair
scheduler, property (3) is satisfied because we abstract all events immediately, properties (4) and (5)
are satisfied for SC because each extension only adds hb-edges that go forwards. Only properties (1)
and (6) are not trivially satisfied. The former corresponds to the existence of transitions inside the
recurrence set and the latter corresponds to reachability, precisely the two conditions of classical
state-based recurrence sets. With this argumentation, our abstract execution-based recurrence sets
are a proper generalization of the classical ones.

7 Application to Automatic Verification
Wenow show how to apply our theory to automatically find non-termination issues in real programs
by looking for lassos.

7.1 From Abstract Lassos to Concrete Lassos
Recall that we defined a lasso to be an abstract recurrence set consisting of a single abstract
execution prefix 𝜉 . Such a lasso can be witnessed by a single concrete execution prefix 𝜀 ∈ 𝜉 ,
which allows us to employ any execution-graph-based reachability checking technique to find
them [21, 38]. Let us first demonstrate lassos in the classical setting.
In the classical state-based setting, a lasso is a single run 𝜌 = 𝜌𝑠𝑡𝑒𝑚 .𝑠 .𝜌𝑙𝑜𝑜𝑝 .𝑠 that repeats some

state 𝑠 [15]. The state 𝑠 forms a singleton recurrence set (which we also call a lasso) with respect to
the transitively-closed transition relation→+. The stem of the run 𝜌𝑠𝑡𝑒𝑚 .𝑠 witnesses the reachability
of the recurrence set, whereas the loop 𝑠 .𝜌𝑙𝑜𝑜𝑝 .𝑠 witnesses the repeatability 𝑠 →+ 𝑠 . We can do
the same in the execution-based setting by looking for a single concrete execution prefix 𝜀 that
consistently and fairly repeats an infix. Let us explain.

Consider a consistent execution 𝜀′ with a run that can be partitioned into 𝜀′ .𝜌 = 𝜌𝑠𝑡𝑒𝑚 .𝜌𝑖𝑛𝑓 .𝜌𝑙𝑜𝑜𝑝 .𝜌𝑖𝑛𝑓
and its prefix 𝜀 = 𝜀′ ↓ 𝜌𝑠𝑡𝑒𝑚 .𝜌𝑖𝑛𝑓 obtained by restricting the execution to the first occurrence of
the infix. We can construct abstract executions 𝜉 and 𝜉 ′ from 𝜀 resp. 𝜀′ by collapsing 𝜌𝑠𝑡𝑒𝑚 in both.
We then check if 𝜉 Ď 𝜉 ′ holds and whether the extension is consistent and fair. This checks if an
abstract execution with run infix 𝜌𝑖𝑛𝑓 consistently and fairly extends to an abstract execution with
run infix 𝜌𝑖𝑛𝑓 .𝜌𝑙𝑜𝑜𝑝 .𝜌𝑖𝑛𝑓 . If further 𝜉 ′ ⊆# 𝜉 holds, i.e., abstracting away the 𝜌𝑖𝑛𝑓 .𝜌𝑙𝑜𝑜𝑝 -part leads to
a repeating past, we have found a lasso: 𝜉 Ď 𝜉 ′ ⊆# 𝜉 implies 𝜉 Ď# 𝜉 . Since 𝜀′ induces an (abstract)
lasso, we also call 𝜀′ a (concrete) lasso. It should now be easy to see that the concrete execution
prefix shown in our initial example Figure 1 is a lasso indeed. The corresponding abstract lasso is
given by the the top-right (or bottom-right) execution in Figure 4.

7.2 Finding Concrete Lassos using SMT
We opted for an SMT-based technique to find lassos using Dartagnan [36–38]. Dartagnan already
encodes all consistent program executions up to a user-specified unrolling bound of the loops. All
we need to do is encode whether such an execution induces a lasso. We sketch the encoding.
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For each execution, we let the SMT solver guess a partitioning into four parts, the events before
the infix (the stem/the past), the events in the infix, and the extension of which a suffix repeats the
infix. To this end, we introduce Boolean variables that indicate whether a loop iteration belongs to
the infix resp. the suffix. Moreover, we have a Boolean variable that indicates whether two loop
iterations are matching, as defined below. Now we look for an execution where each thread that
fails to terminate (reaches the unrolling bound) and is subject to scheduler fairness has a loop
iteration in the infix with a matching partner in the suffix. The matching constraints are:
• matching loop iterations have to emit the same events with the same values (repeating control
and data flow),
• if there are rf/co-edges within the infix, then also the suffix has to have the same edges
(repeating justification).

Lastly, we need to encode the consistency and memory fairness checks. We could use the instru-
mented memory model𝑚𝑚′ from Theorem 6.7 and encode it just like Dartagnan encodes the
non-instrumented model𝑚𝑚. However, we chose to approximate the checks instead. Let us explain.
Since we only encode {co, fr}-fairness, we do not need the full instrumented memory model

to check memory fairness. Instead, we just require writes in the suffix to be co-after writes in
the prefix (co-fairness), and that reads in the suffix only read from writes in the prefix if they are
globally co-maximal (fr-fairness). We simply omit the consistency check of the extension. However,
note that we still check consistency of the execution as a whole. This might give spurious lassos in
theory, but it never does so in practice. The reasons are twofold. On the one hand, restricting co

and rf between suffix and prefix already heavily restricts derived relations like hb between suffix
and infix, oftentimes sufficiently enough to pass the omitted consistency check of the extension. On
the other hand, even if the check had failed, the extension might still be consistent for the concrete
past we have at hand (recall that the check reasons about all possible pasts). Indeed, the fact that
we found an execution that could consistently repeat its infix twice already indicates that further
repetitions will likely stay consistent.
The advantage of omitting the consistency check of the extension is that, apart from giving

smaller encodings, it works out-of-the-box with Dartagnan’s lazy solving approach that uses its
own theory solver for consistency and hence can avoid encoding the memory model [17].

8 Evaluation
Our theory reasons about weak consistency, memory fairness, scheduler (un)fairness, and side-
effects. We set up several experiments to show-case the need for all those features. It should be
noted, however, that we have not found a single benchmark that requires reasoning about all
aspects simultaneously.

We implemented the encoding from Section 7 in Dartagnan5. We also implemented the theory
from [22], which allows us to prove termination of programs where all spin loops are side-effect free.
Dartagnan reasons about litmus tests written in a pseudo-assembly format, real programs written
either in C or several shading languages (including Slang, OpenCL and Hlsl via Spir-V), weak
consistency models written in CAT, and a predefined set of scheduler functions taken from [46].

8.1 Validation
We performed three experiments to validate our theory and implementation. For this, we use
(i) synthetic benchmarks that show some complex patterns handled by our theory, (ii) several
litmus tests previously used to specify GPU workgroup forward progress models [46], and (iii)
concurrency benchmarks from the Software Verification Competition (SV-COMP [9]).
5Our implementation is available starting from version 4.3.0.
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Table 1. Validating Dartagnan on synthetic non-termination benchmarks (left) and litmus tests w.r.t. different

forward progress models (right).

Benchmark Terminates Time

asymmetric ✗ 0.7s
complex ✗ 1.0s
oscillating ✗ 0.5s

weak ✗ 0.8s
xchg ✗ 0.6s

zero_effect ✗ 6.9s

Scheduler Pass Fail Unknown Error

Fair 104 156 217 6
Obe 8 453 16 6
Hsa 42 388 47 6

Hsa+Obe 46 367 64 6
Lobe 46 356 75 6

Synthetic Benchmarks. Since none of the real programs in Sections 8.2 and 8.3 cover all complex
scenarios our theory supports, we created six programs with non-terminating loops on different
threads. They require reasoning about memory fairness, weak memory, and side-effects:

(i) asymmetric: until y==1, loop-1 alternates between assigning x=0 and x=1. Loop-2 checks
if x==0 || x==1, and if so, terminates and sets y=1. If between each check the value gets
flipped, the program fails to terminate; this requires two iterations of loop-1 for each iteration
of loop-2.

(ii) complex: three loops in different threads interfere with each other. Any pair of loops would
terminate, but all three together do not.

(iii) oscillating: at each iteration, one loop changes a memory value first to zero and then to one,
i.e., the value oscillates. Another loop always observes the same value, and thus it continues
spinning. This is the test shown in Figure 1.

(iv) weak: a message passing pattern repeats until success. This test fails to terminate on memory
models that require barriers to make message passing work, i.e., anything weaker than TSO.

(v) xchg: a loop that tries to acquire a taken lock using side-effectful atomic exchange operations.
(vi) zero_effect: Similar to xchg but uses fetch-add operations that cancel each other.

For these benchmarks, we used IMMas thememorymodel [35]. Table 1 (left) shows that Dartagnan
finds all non-termination bugs.

Forward Progress Litmus Tests. We used 483 litmus tests that were previously used to study
different forward progress models for GPU concurrency [46]. The tests do not make use of weak
concurrency, and thus the results are independent of the memory model. However, since the tests
make use of the memory hierarchy found on GPUs, we used the Vulkan memory model [47].
Many of these tests contain loops with side-effects, meaning we cannot always prove termination.
However, we can find all non-terminating instances. These benchmarks require handing of scheduler
(un)fairness, memory fairness, and side-effects.

The results are given in Table 1 (right). The Error column contains programs which Dartagnan
cannot unroll since they contain loops that cannot be normalized. For all results in the Pass and
Fail columns, Dartagnan agrees with the results from [46]. Column Unknown shows those
terminating tests that have side-effects.

SV-COMP Benchmarks. Although the competition has categories for concurrency and termination,
there is not yet a category that requires reasoning about both. However, a proposal to introduce
such a category adds termination results for 183 concurrency benchmarks [41]. The expected results
were generated by the UAutomizer tool [12] and complemented by some benchmarks that were
manually labeled. These benchmarks require reasoning about memory fairness, side-effects, and as
we will show below, scheduler (un)fairness.
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Table 2. Detecting non-termination under weak memory on real C programs.

Benchmark GenMC (M) GenMC (A) Dartagnan (A)

arraylock ✓ (0.1s) ✓ (0.1s) ✓ (1.7s / B=4)
caslock ✓ (0.2s) � ✓ (2.0s / B=4)
clhlock ✓ (0.1s) � ✓ (1.5s / B=4)
cnalock ✗ (0.2s) ✗ (0.2s) ✗ (11.9s / B=2)
hclhlock ✗ (0.5s) ✗ (0.5s) ✗ (1m 58s / B=2)
hemlock ✓ (0.2s) � ✓ (2.3s / B=4)
hmcslock ✗ (0.3s) ✗ (0.3s) ✗ (44.3s / B=8)
mcslock ✗ (0.1s) � ✗ (1.2s / B=2)

rec_mcslock ✗ (0.1s) � ✗ (2.3s / B=4)
rec_seqlock ✓ (1.3s) ✓ (0.6s) ✓ (6.7s / B=4)

Benchmark GenMC (M) GenMC (A) Dartagnan (A)

rec_spinlock ✓ (0.4s) � ✓ (2.9s / B=4)
rec_ticketlock ✓ (0.1s) � ✓ (2.7s / B=4)

rwlock ✓ (0.5s) � ✓ (20.8s / B=4)
semaphore ✓ (0.1s) ✓ (0.1s) ✓ (21.6s / B=4)
seqcount ✓ (0.1s) ✓ (0.1s) ✓ (0.6s / B=4)
seqlock ✓ (0.3s) ✓ (0.2s) ✓ (1.9s / B=4)
ticketlock ✓ (0.1s) � ✓ (1.3s / B=4)
ttaslock ✓ (0.1s) � ✓ (2.1s / B=4)
twalock ✗ (0.3s) � ✗ (1.7s / B=2)

From the 143 benchmarks that are claimed to terminate, Dartagnan can prove termination
for 43 of them (since all spin loops are side-effect free), throws an error for 2, and reaches a 15
minutes timeout for the remaining 98. For the 40 benchmarks that are claimed not to terminate,
Dartagnan reports non-termination for 22 of them, throws an error for 6, and reports a timeout
for 9. Interestingly, it reports that 3 of these benchmarks terminate. The developers of UAutomizer
acknowledged that this is because their tool does not assume any kind of fairness. If we enable the
unfair scheduler in Dartagnan, it also reports non-termination for the 3 of them.

8.2 Termination of Real C Programs
This section compares Dartagnan and GenMC6 [21] on several synchronization primitives from
the Libvsync library [39]. GenMC is the only other tool that reasons about memory models and
termination. However, it only handles side-effect free loops. Libvsync benchmarks are correct
(including termination) even in the presence of weak memory models. However, it has previously
been shown that some barriers can be relaxed without violating safety, i.e., mutual exclusion [34].
This means that some memory-model-related bugs only manifest as non-termination bugs and
so we need a theory that can reason about both. We relaxed barriers in such a way that mutual
exclusion is still preserved. However, such relaxations introduce non-termination bugs in six of
the benchmarks. Since by default Libvsync relies on manual annotation of spin loops, we run
GenMC both using these annotations and relying on its automatic detection. For Dartagnan we
rely purely on its automatic spin loop detection. We use a 15 min timeout for each verification run.
Both tools can only prove correctness if executions are bounded. The automatic spin loop

detection of GenMC fails in more than half of the benchmarks. Not being able to bound the
executions, the tool reaches a timeout. When manual annotations are used, GenMC finds all non-
termination bugs and proves the remaining benchmarks correct. Dartagnan requires the user
to explicitly set the unrolling bound. We used bounds large enough to find violations or prove
correctness. The used bound is given next to the solving time. Dartagnan finds all non-termination
bugs and proves all remaining benchmarks correct. Notice that when both tools terminate, GenMC
is much faster than Dartagnan.

8.3 Termination of Real GPU Computing Kernels
Prefixsum is a core building block for GPU algorithms [2, 10, 42]. Given an input array, it returns
an array where the 𝑛-th element is the sum of the preceding subsequence of elements. In GPUs, the
computation is split across different sets of threads (called workgroups). Each workgroup performs
the prefixsum of its portion of the input, waits for the results of the preceding workgroup so it
6Version v0.11.0 (commit #b03f01e). Versions v0.12.0 to v0.13.1 (the newest at the time of publication) report wrong results
on seqlock and rec_seqlock.
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can incorporate it into its own result, and it then forwards the result to the next workgroup. The
waiting and forwarding is a message passing pattern across workgroups.

Depending on how preceding and next are computed, the code might hang. The problem is that
if there are not enough resources to allocate all workgroups on hardware, the scheduler will split
them into several batches. If a workgroup in one batch waits on a workgroup of a not-yet executed
batch, the program will hang if resources are never freed. This is what happens on some current
GPUs. While it is known that this algorithm is not portable across different GPUs due to the lack
of forward progress guarantees [24, 43], to the best of our knowledge, no tool has been able to
automatically prove this until now.
What makes this problem particularly challenging, is that it requires to reason about progress

models, and termination7. We used Dartagnan to verify three different implementations of prefix-
sum. One developed at UCSC using OpenCL [13, 27], one developed as part of the Vello graphics
rendering engine using Hlsl [25], and one developed by us using Slang. All three implemen-
tations follow the state-of-the-art decoupled look-back [32]. The benchmarks are configured to
have three workgroups (to force executing the look-back logic) having two threads each (to force
intra-workgroup synchronization via control barriers8).

The original implementation of prefixsum uses the id of the workgroups to decide how they wait
for each other. Table 3 shows that for this implementation, the forward progress guarantees given
by HSA are enough to guarantee termination, but those of OBE are not. An alternative approach is
to make each workgroup obtain a ticket using an atomic increment before performing the core logic
of the algorithm. In this case, the waiting is on a workgroup that has already performed at least one
execution step (otherwise it would not have obtained a smaller ticket). The OBE model guarantees
that if a workgroup performed at least one execution step, then it experiences fair scheduling and
thus it will eventually forward its result. Table 3 shows that this is enough to guarantee termination
of decoupled look-back. While it has been empirically shown that most current GPUs implement
OBE, at least some Apple devices still violate this model [46].
Interestingly, the Vello implementation terminates even under an unfair scheduler. This imple-

mentation uses a work-stealing method called scalar fallback. At each spinning iteration, it processes
one element corresponding to the workgroup it waits for. Since the number of such elements is
bounded, Table 3 shows the approach terminates even if no forward progress guarantees are given
(Dartagnan requires a larger unrolling bound which considerably increases the verification time).
This algorithm has two limitations: the fallback is performed sequentially by a single thread and the
result is never posted to device memory, forcing every blocked workgroup to recompute the fallback.
Decoupled fallback [43] overcomes these limitations by parallelizing the fallback using subgroup
operations. Since the synchronization and progress guarantees of subgroup operations are not yet
clear9, Dartagnan cannot support them. Thus, we skip the decoupled fallback implementation.

9 Related Work
Most previous works on (non-)termination are either restricted to sequential programs [11, 15, 23,
33], or consider concurrency with interleaving semantics and strong scheduler assumptions [7, 30].
However, three lines of work are closely related to ours. We discuss them below.

Abdulla et al. have considered the verification of liveness properties under weak memory mod-
els [1]. They rely on a unifying operational semantics that captures several memory models (but not
all, such as ARM8 and Power) and show how to reduce the repeated control reachability problem

7Proving safety additionally requires reasoning about weak consistency.
8Details of our semantics for control barriers can be found in the Appendix.
9This is a topic the memory and execution model TSG of the Khronos group is currently working on [19].
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Table 3. Termination of prefixsum implementations under different forward progress guarantees.

PrefixSum Scheduler Terminates Time

Ours (ids) fair ✓ 22.2s (B=3)
Ours (ids) obe ✗ 1m 18s (B=3)
Ours (ids) hsa ✓ 22.8s (B=3)
Ours (ids) unfair ✗ 1m 26s (B=3)

Ours (ticket) fair ✓ 19.4s (B=3)
Ours (ticket) obe ✓ 22.9s (B=3)
Ours (ticket) lobe ✓ 23.2s (B=3)
Ours (ticket) unfair ✗ 51.1s (B=3)

PrefixSum Scheduler Terminates Time

UCSC (ticket) fair ✓ 6.4s (B=2)
UCSC (ticket) obe ✓ 7.8s (B=2)
UCSC (ticket) hsa ✗ 10.2s (B=2)
UCSC (ticket) unfair ✗ 18.8s (B=2)

Vello (ticket) fair ✓ 13m 50s (B=8)
Vello (ticket) obe ✓ 21m 51s (B=8)
Vello (ticket) lobe ✓ 15m 20s (B=8)
Vello (ticket) unfair ✓ 24m 49s (B=8)

to a state reachability problem under weak memory. This reduction makes proof techniques for
reachability also applicable to liveness verification and even yields decidability results. However, the
reduction relies on memory and scheduler fairness assumptions stronger than ours, in particular,
they assume that any transition that can happen infinitely often will happen infinitely often. This
excludes unfair scheduling such as found on GPUs, but also reasonable weak behavior where, e.g,
two store operations are always propagated out-of-order or a store buffer is never emptied fully.
Also, their work gives no tool to actually solve the non-termination problem.

Another important work is by Lahav et al. about memory fairness under axiomatic memory
models [22]. They characterize memory-fair behavior directly on execution graphs using prefix-
finiteness of certain communication edges in the graphs. This notion of memory fairness relates to
a weaker notion of fairness in the operational semantics: only transitions that are continuously
enabled will eventually happen. They use this characterization to prove (non-)termination of
programs (under fair scheduling) whose only unbounded behavior comes from spin loops, i.e.,
loops that do not have side effects and only read from memory. This characterization also gives a
practical algorithm to automatically check (non-)termination under weak memory [22, 34] which is
implemented in GenMC. Our development makes use of Lahav et al.’s characterization of memory
fairness, but also considers unfair scheduling. While our approach is restricted to non-termination
only, it can deal with a far richer class of loops, in particular, loops with side effects.
The interest in unfair schedulers has developed relatively recently with the rising interest in

executing complex parallel algorithms on GPUs. In [45], Sorensen et al. analyzed the semi-fair
scheduling guarantees that existing GPU programs rely on and gave a formal description of these
guarantees. In [46], they tested if actual GPU implementations provide the formalized scheduler
guarantees. To do so, they developed a termination oracle that decides the termination of small
litmus programs under semi-fair schedulers by exhaustive enumeration techniques. They disregard
weak memory behaviors and work on classical operational interleaving semantics of concurrent
programs. However, it is known that GPUs can exhibit weak memory behaviors [20, 26, 28].

10 Data Availability Statement
An accompanying artifact is available to reproduce all data presented in Section 8 [16]. The full
Dartagnan tool is open-source and available at https://github.com/hernanponcedeleon/Dat3M.
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Table 4. Termination of prefixsum implementations under different forward progress guarantees.

PrefixSum Scheduler Terminates Time

Ours (ids) fair ✓ 22.2s (B=3)
Ours (ids) obe ✗ 1m 18s (B=3)
Ours (ids) hsa ✓ 22.8s (B=3)
Ours (ids) hsa_obe ✓ 22.9s (B=3)
Ours (ids) lobe ✓ 24.4s (B=3)
Ours (ids) unfair ✗ 1m 26s (B=3)

Ours (ticket) fair ✓ 19.4s (B=3)
Ours (ticket) obe ✓ 22.9s (B=3)
Ours (ticket) hsa ✗ 55.4s (B=3)
Ours (ticket) hsa_obe ✓ 21.3s (B=3)
Ours (ticket) lobe ✓ 23.2s (B=3)
Ours (ticket) unfair ✗ 51.1s (B=3)

UCSC (ticket) fair ✓ 6.4s (B=2)
UCSC (ticket) obe ✓ 7.8s (B=2)
UCSC (ticket) hsa ✗ 10.2s (B=2)
UCSC (ticket) hsa_obe ✓ 7.4s (B=2)
UCSC (ticket) lobe ✓ 7.5s (B=2)
UCSC (ticket) unfair ✗ 18.8s (B=2)

Vello (ticket) fair ✓ 13m 50s (B=8)
Vello (ticket) obe ✓ 21m 51s (B=8)
Vello (ticket) hsa ✓ 18m 39s (B=8)
Vello (ticket) hsa_obe ✓ 18m 37s (B=8)
Vello (ticket) lobe ✓ 15m 20s (B=8)
Vello (ticket) unfair ✓ 24m 49s (B=8)

A Full Evaluation
The full set of experiments from Table 3 is given in Table 4.

B Proofs
Proof of Theorem 6.6. Let 𝜉 Ď 𝜉 ′ be an extension in the abstract. The run of the extended

abstract execution prefix has shape 𝜉 ′ .𝜌 = 𝜌 (𝜉).𝜌𝑛𝑒𝑤 and the newly added events are given by
𝑋𝑛𝑒𝑤 = Ev(𝜌𝑛𝑒𝑤). Now, consider a concrete execution prefix 𝜀 ∈ 𝛾 (𝜉) which has a run of shape
𝜀.𝜌 = 𝜌𝑝𝑟𝑒 .𝜌 (𝜉). We can extend this run to 𝜌 ′ = 𝜌𝑝𝑟𝑒 .𝜌 (𝜉).𝜌𝑛𝑒𝑤 = 𝜌𝑝𝑟𝑒 .𝜌 (𝜉 ′). We construct 𝑋𝐺 ′
by starting from 𝐸𝐺 (𝜌 ′) and adding read-from and coherence edges as follows. First, we add
all read-from and coherence edges that already exist in 𝜀.𝑋𝐺 and 𝜉 ′ .𝑋𝐺 . Then, for each prefix-
justified read 𝑥 = R(𝑙, 𝜉 .𝜇 (𝑙)) ∈ 𝑋𝑛𝑒𝑤 , we identify the co-maximal write 𝑦 to address 𝑙 among all
writes in 𝑋𝑝𝑟𝑒 = Ev(𝜌𝑝𝑟𝑒 ). This write must exist and its value must be 𝜉 .𝜇 (𝑙) by definition of the
concretization. We can add the rf(𝑦, 𝑥)-edge to justify the read.

For each write event in 𝑋𝑛𝑒𝑤 we place it co-after all same-address writes in 𝑋𝑝𝑟𝑒 . This yields the
graph 𝑋𝐺 ′. For this to be a valid execution graph, we need to check that its coherence is total per
address, i.e., it relates all same-address writes and is acyclic. To see this, first notice that all writes
in 𝑋𝐺 ′ .𝑋 \ 𝑋𝑛𝑒𝑤 = 𝜀.𝑋 are totally ordered as desired. Similarly, the writes in 𝑋𝐺 ′ .𝑋 \ 𝑋𝑝𝑟𝑒 = 𝜉 ′ .𝑋
are totally ordered. Observe that the two suborders are compatible: their union is acyclic. If it was
not, there would be a co-cycle involving events from 𝑋𝑝𝑟𝑒 and 𝑋𝑛𝑒𝑤 , in particular, there would be a
co-path from𝑋𝑛𝑒𝑤 to𝑋𝑝𝑟𝑒 . By definition of the extension 𝜉 Ď 𝜉 ′ this cannot be the case, because we
do not permit (abstract) co(𝑋𝑛𝑒𝑤, •)-edges. We can now make the order total by adding co-edges
from 𝑋𝑝𝑟𝑒 to 𝑋𝑛𝑒𝑤 . This yields the finished execution graph 𝑋𝐺 ′.
Lastly, we define 𝜋 ′ = 𝜀.𝜋 ∪ 𝜉 ′ .𝜋 Putting all together, we get 𝜀′ = (𝜌 ′, 𝑋𝐺 ′, 𝜋 ′) which satisfies

𝜀 Ď 𝜀′. Furthermore, it is easy to see that by construction that 𝜀′ ∈ 𝛾 (𝜉 ′) as desired. □

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 45. Publication date: January 2026.



45:32 Thomas Haas, Roland Meyer, Hernán Ponce de León, Andrés Lomelí Garduño

Proof of Theorem 6.7. Let 𝜉 Ď 𝜉 ′ and let 𝐺 be the combined and partially unfolded execution
graph. Let 𝑆 = 𝜉 ′ .𝑋 \ 𝜉 .𝑋 be the newly appended events and let𝑚𝑚′ the instrumented memory
relative to 𝑆 .
First we show that if 𝐺 is consistent with 𝑚𝑚, then 𝜉 Ď 𝜉 ′ is consistent. Let 𝜀 ∈ 𝛾 (𝜉) be a

consistent execution and let 𝜀 Ď 𝜀′ ∈ 𝛾 (𝜉 ′) be its canonical extension. We need to show that 𝜀′
is consistent. Suppose 𝜉 ′ was inconsistent w.r.t. some axiom empty(r) in𝑚𝑚 (wlog., we restrict
to emptiness axioms because all axioms are reducible to those). Then there exists a r(𝑥,𝑦)-edge
in 𝜀′. We consider the derivation tree of r(𝑥,𝑦) induced by the derivations that𝑚𝑚 performs to
compute the edge. The leaves of this derivation tree are edges of base relations. Among those edges,
there must be some that involves events from 𝑆 , for otherwise, that derivation is also valid on 𝜀.𝑋𝐺
(the memory model is monotonic) which contradicts the consistency of 𝜀. By construction of the
instrumented model𝑚𝑚′, this derivation tree is essentially also a derivation tree for r′ (𝑥,𝑦) in
𝜀′ .𝑋𝐺 . Furthermore, the edge remains derivable when we collapse events and edges, and therefore,
it is also derivable in 𝐺 . Hence, 𝐺 is also inconsistent with𝑚𝑚′, which contradicts the assumption.
It follows that 𝜀′ must be consistent as desired.
The second part of the lemma states that if𝐺 has no r∗; r′; r∗-edges into any event of 𝜉 .𝜋 (r) ∪ {•}

then 𝜉 Ď 𝜉 ′ is r-memory-fair. The proof is similar to above. Let 𝜀 ∈ 𝛾 (𝜉) be an execution and let
𝜀 Ď 𝜀′ ∈ 𝛾 (𝜉 ′) be its canonical extension. We need to show that 𝜀 Ď 𝜀′ is r-memory-fair. Suppose it
was not, then there is an 𝑥 ∈ 𝜀.𝜋 (r) whose prefix got extended, i.e., a new edge r+ (𝑦, 𝑥) is derivable
in 𝜀′ .𝑋𝐺 . We again consider the derivation tree of that edge and notice that it must involve some
newly appended events 𝑆 (for otherwise, the edge would not be new). This means the derivation
tree also derives a r∗; r′; r∗ (𝑦, 𝑥)-edge in 𝜀′ .𝑋 . Since collapsing preserves edges, this edge must be
represented in𝐺 . Now observe that since 𝑥 is r-prefix-complete, it gets collapsed to an event inside
𝜉 .𝜋 (r) ∪ {•}, which yields a contradiction with the fact that 𝐺 has no such edges into that set of
events. □

C Notes on continuity
In the main text, we shortly defined lower semi-continuity and showed how it plays an important
role in the soundness of recurrence sets. Here, we give a more complete picture about continuity,
including definitions of upper semi-continuity and (full) continuity, and relevant lemmas on their
composition properties. This will justify Claim 1 and, in particular, why the alternation between
negations and projective operators as discussed in Section 5.2 is necessary to construct non-lower-
semi-continuous memory models.

Definition C.1 (Set-theoretic limits). Let (𝐴𝑖 )𝑖∈N be a sequence of sets. Then the limit inferior
lim inf𝑖 𝐴𝑖 :=

⋃
𝑖

⋂
𝑗≥𝑖 𝐴𝑖 and the limit superior lim sup𝑖 𝐴𝑖 :=

⋂
𝑖

⋃
𝑗≥𝑖 𝐴𝑖 both exists. Notice that

lim inf 𝐴𝑖 ≤ lim sup𝐴𝑖 always holds. If both coincide, we can define the limit lim𝑖 𝐴𝑖 := lim inf𝑖 𝐴𝑖 =

lim sup𝑖 𝐴𝑖 .

Definition C.2 (Semi-continuous functions). A function 𝑓 : P(A) → P(B) is lower semi-continuous
if for all sequences (𝐴𝑖 )𝑖∈N we have lim inf 𝑓 (𝐴𝑖 ) ≥ 𝑓 (lim inf 𝑎𝑖 ). Similarly, 𝑓 is upper semi-
continuous if lim sup 𝑓 (𝐴𝑖 ) ≤ 𝑓 (lim sup𝐴𝑖 ). If a function is both lower and upper semi-continuous,
we call it continuous.

Lemma C.3. Continuous functions preserve limits.

Proof. Let 𝑓 be continuous and 𝐴𝑖 be a sequence with limit 𝐴. Then 𝑓 (𝐴) = 𝑓 (lim inf𝑖 𝐴𝑖 ) ≤
lim inf𝑖 𝑓 (𝐴𝑖 ) ≤ lim sup𝑖 𝑓 (𝐴𝑖 ) ≤ 𝑓 (lim sup𝑖 𝐴𝑖 ) = 𝑓 (𝐴). □

Lemma C.4. If 𝑓 and 𝑔 are continuous functions that compose, then 𝑓 ◦ 𝑔 is also continuous.
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Proof. Let 𝐴𝑖 be a sequence with limit 𝐴, i.e., lim𝑖 𝐴𝑖 = lim inf𝑖 𝐴𝑖 = lim sup𝑖 𝐴𝑖 = 𝐴. Then
lim𝑖 𝑓 (𝑔(𝐴𝑖 )) = 𝑓 (lim𝑖 𝑔(𝐴𝑖 ))) 𝑓 (𝑔(lim𝑖 𝐴𝑖 )) = 𝑓 (𝑔(𝐴)) by applying continuity of 𝑓 and 𝑔. □

Lemma C.5. If 𝑓 and 𝑔 are lower (upper) semi-continuous and 𝑓 is monotonic, then the composition
𝑓 ◦ 𝑔 is lower (upper) semi-continuous.

Lemma C.6. Let𝐴𝑖 be a sequence. We consider the case where 𝑓 and 𝑔 are lower semi-continuous. We
have lim inf𝑖 𝑓 (𝑔(𝐴𝑖 )) ≥ 𝑓 (lim inf𝑖 𝑔(𝐴𝑖 )) ≥ 𝑓 (𝑔(lim inf𝑖 𝐴𝑖 )). The first inequality holds by lower
semi-cont. of 𝑓 and the second holds by lower semi-cont. of 𝑔 and the fact that 𝑓 is monotonic. In
the case where 𝑓 and 𝑔 are upper semi-continuous, we have lim sup𝑖 𝑓 (𝑔(𝐴𝑖 )) ≤ 𝑓 (lim sup𝑖 𝑔(𝐴𝑖 )) ≤
𝑓 (𝑔(lim sup𝑖 𝐴𝑖 )), by essentially the same arguments as above.

The definitions of continuity can be applied to functions 𝑓 from 𝜔-complete partial orders A into
power sets, by only considering monotonic sequences (𝑎𝑖 )𝑖∈N and defining lim𝑖 𝑎𝑖 = lim inf𝑖 𝑎𝑖 =
lim sup𝑖 𝑎𝑖 . Notice how we derive limit inferior and superior from the existence of unique limits of
𝜔-chains, opposite to how limits on sets are defined by limit inferior and superior. The restriction
to 𝜔-chains gives us stronger results.

Lemma C.7. If 𝑓 : A→ P(B) is monotonic and lower semi-continuous, then it is also continuous.

Proof. We need to show that 𝑓 is upper semi-continuous. To see this, consider an 𝜔-chain
(𝑎𝑖 )𝑖∈N with limit 𝑎, then we have lim sup𝑖 𝑓 (𝑎𝑖 ) ≤ lim sup𝑖 𝑓 (𝑎) = 𝑓 (𝑎) = 𝑓 (lim sup𝑎𝑖 ). The first
inequality holds by monotonicity and the fact that 𝑎𝑖 ≤ 𝑎 for all 𝑖 , and the last equality holds by
𝑎 = lim𝑖 𝑎𝑖 = lim sup𝑖 𝑎𝑖 . □

Lemma C.8. If 𝑓 : P(A) → P(B) is Scott-continuous, then it is also lower semi-continuous. This
also holds true if P(A) is replaced by a 𝜔-complete partial order.

Proof. We have lim inf𝑖 𝑓 (𝑎𝑖 ) =
⋃

𝑗

⋂
𝑖≥ 𝑗 𝑓 (𝑎𝑖 ) ≥

⋃
𝑗 𝑓 (

⋂
𝑖≥ 𝑗 𝑎𝑖 ) = 𝑓 (⋃𝑗

⋂
𝑖≥ 𝑗 𝑎𝑖 ) = 𝑓 (lim inf𝑖 𝑎𝑖 ).

The first inequality holds by monotonicity of 𝑓 (Scott-continuous functions are monotonic) and
the fact that 𝑎𝑘 ≥

⋂
𝑖≥𝑘 𝑎𝑖 for all 𝑖 . The following equality holds by Scott-continuity of 𝑓 which

guarantees preservation of limits of increasing sequences. Notice that
⋂

𝑗≥𝑖 𝑎𝑖 is increasing w.r.t. 𝑗 ,
because the larger 𝑗 , the less we intersect. □

Combining the previous two lemmas, we get the following corollary.

Corollary C.9. If 𝑓 : A→ P(B) is Scott-continuous, then it is also continuous.

Lemma C.10 (Continuity of set operations). The set operations union and intersection are
monotonic and continuous. Set complementation is continuous but not monotonic (but antitonic). The
cartesian product operation is monotonic and lower semi-continuous, but not upper semi-continuous.
The projective operations (composition, range projection, and domain projection) are also monotonic
and lower semi-continuous. The converse operation is continuous.

Actually, all operations but complementation are also Scott-continuous.

Notice that the above lemma talks about set operations as functions from power sets into power
sets. This makes a subtle difference in properties. For example, compare the composition function
(r1, r2) ↦→ r1; r2 vs. the function 𝜀 ↦→ 𝜀.r1; 𝜀.r2. The former is not upper semi-continuous and hence
not continuous, but the latter is! This comes from the fact that the latter only needs to reason
about monotonic input sequences rather than arbitrary input sequences. This difference makes it
particularly hard to construct, in CAT, derived relations that fail to be lower semi-continuous and
is the reason why Claim 1 holds. Let us demonstrate this.
Our goal is to construct a relation r that is not lower semi-continuous when understood as

a function r : (ExecPre,Ď) → P(𝑋 × 𝑋 ). Since all operators in the CAT language except for
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negation/difference are monotonic and lower semi-continuous and composing those operators
again yields monotonic and lower semi-continuous operators, we need to use negations to construct
the desired r. However, since the negation operator is continuous, and on base relations and any
boolean combination thereof it is even monotonic (by a property we explained in the main text), we
need to apply the negation after a projective operator. So let r1 be a relation defined by using at least
one projective operator but no negations yet. r1 is monotonic and lower semi-continuous and hence
even continuous by a previous lemma. We apply the negation to get r2 = ¬r1 which is in general
non-monotonic but still continuous, since composition of continuous functions is again continuous.
Applying more continuous operators like the boolean set operations will get us nowhere. We now
need to apply yet again a projective operator, which leads to a relation r3 that fails to be continuous
but is still lower semi-continuous. Lower semi-continuity still holds by a previous lemma about the
composition of a monotonic lower semi-continuous function (the projective operator) and another
semi-continuous function (r2). Notice that r3 can only fail to be continuous here because it is not
monotonic (that is why we had to construct r2 to be not monotonic). Now composing it further with
any of the positive operators will keep the relation lower semi-continuous, so we need to apply yet
another negation to finally get the desired relation r = r4 that fails to be lower semi-continuous. In
summary, we need to perform at least the following sequence of operations "projection -> negation
-> projection -> negation" to define a relation in CAT that fails to be lower semi-continuous.

D Extension to Control Barriers
GPU code uses control barriers to synchronize the control-flow of multiple threads. On entering a
control barrier, a thread blocks until all other threads within the same execution scope, e.g., the
same workgroup, reach that control barrier. To model this operation axiomatically, we add a new
control barrier event𝐶𝐵(𝑖𝑑,𝑇 , 𝑠𝑡𝑎𝑡𝑢𝑠) that consists of an id, a set of threads𝑇 ⊆ Tid, and a status of
whether the thread got blocked or not. The intuitive semantics of executing a control barrier is that
the executing thread blocks until all threads in 𝑇 execute their corresponding control barrier with
the same id (the id is used to identify which control barriers are related to each other). We assume
that the id and the set of threads 𝑇 synchronizing at a barrier is statically determined, which is
the case for so-called uniform control barriers. Upon executing a control barrier, a thread guesses
whether it gets blocked or whether it will pass the barrier. In case of the former, we assumes the
thread records its blocking state, including the set of threads 𝑇 it is waiting for, in its local state.
In a program execution, these guesses need to get justified, similar to how guessed read values

get justified. For this, we use a new sync relation that tries to relate the 𝑘-th occurrence of an
event 𝑥 =𝐶𝐵(𝑖𝑑,𝑇 , 𝑠𝑡𝑎𝑡𝑢𝑠) of a thread to the 𝑘-th occurrence of 𝑦 =𝐶𝐵(𝑖𝑑,𝑇 , 𝑠𝑡𝑎𝑡𝑢𝑠′) in all other
threads in 𝑇 . If the relation sync can be established, then the status of all matching control barriers
must be "unblocked", otherwise, they are "blocked". Partial execution graphs are allowed to have
unblocked, but yet unjustified control barriers. Recurrence sets then have the extra condition of
eventually justifying every unblocked control barrier (similar to how they eventually justify every
read). This ensures that the infinite execution witnessed by the recurrence set is feasible in that
it does not eventually get stuck in a control barrier. At the same time, the scheduling condition
gets relaxed so that only fairly scheduled threads that are unblocked need to make progress. For
abstract recurrence sets, we add the restriction that unblocked but yet-unjustified control barriers
cannot be abstracted away, i.e., they must get justified first.
Illegal unblocking behavior is prevented by the fact that unblocking must get justified. To also

prevent illegal blocking behavior, we use the local state of the concrete infix: if a thread is blocked
on a set of threads 𝑇 and all threads in 𝑇 are blocked on the same control barrier id, then the
execution is invalid (they should have been unblocked).
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In the presence of control barriers, there is a new kind of finite non-termination where every
thread is blocked, which is witnessed by finite executions. This particular non-termination is
detectable using classical reachability checks and therefore orthogonal to our recurrence sets which
witness infinite non-termination.

E Improving Lasso Finding and Further Applications
We make a few remarks about how to generalize lassos further for practical applications. The
presented lasso-finding approach relies on a strict repetition of the infix, meaning the values of all
events must repeat exactly. The only reason for this strict requirement is that we can guarantee the
control flow remains repeatable. This leads to a simple generalization where we relax the condition
on dead variables and events, i.e., values of dead variables are allowed to change and so do values
of unobserved stores and unused loads. More generally, we may also allow the modification of
values of non-control-flow variables.

We can take it even a step further and allow variables to change as long as the the control flow
stays the same. However, this requires invariant reasoning and so falls outside the scope of bounded
reachability checkers such as Dartagnan. A possible solution is to look for lasso candidates that
ignore the value constraints and from that candidate generate a sequential program that models the
repeating infix as a single loop. The lasso candidate resolves all concurrency non-determinism in a
consistent and fair manner, and hence allows us to reduce the remaining data flow to a sequential
program. Then (non-)termination checkers can be used to check the sequential program [11, 15].
In fact, it suffices now to find a classical state-based recurrence set. We remark that the above
idea of combining lasso-finding with invariant generation already existed in earlier works [15].
What is new is that our lassos have a more general form that considers concurrency, weak memory
consistency, and fairness constraints.
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