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Abstract. We describe the new features of the bounded model checker
Dartagnan for SV-COMP’21. We participate, for the first time, in
the ReachSafety category on the verification of sequential programs. In
some of these verification tasks, bugs only show up after many loop iter-
ations, which is a challenge for bounded model checking. We address the
challenge by simplifying the structure of the input program while pre-
serving its semantics. For simplification, we leverage common compiler
optimizations, which we get for free by using LLVM. Yet, there is a price
to pay. Compiler optimizations may introduce bitwise operations, which
require bit-precise reasoning. We evaluated an SMT encoding based on
the theory of integers + bit conversions against one based on the the-
ory of bit-vectors and found that the latter yields better performance.
Compared to the unoptimized version of Dartagnan, the combination
of compiler optimizations and bit-vectors yields a speed-up of an order
of magnitude on average.

1 Overview

Dartagnan is a bounded model checking (BMC) tool for reachability analysis.
It takes a program and converts it to an SMT formula representing all its execu-
tions up to a given bound. This formula, together with a reachability condition
representing assertions, is passed to an SMT solver (we use Z3 as a backend). If
the formula is satisfiable, an execution violating an assertion exists.

Dartagnan was initially developed to verify small concurrent programs
(written in the .litmus format) under weak memory models. Since 2020, it
also supports Boogie intermediate verification language as its input language.
For C programs, we use SMACK [6] to compile to LLVM and transform the
compiled code to Boogie. Dartagnan’s architecture, and main verification tech-
niques (in particular how to efficiently handle different memory models) are
described in [1,2,5]. Version 2.0.7 participating in SV-COMP’21 can be down-
loaded from https://github.com/hernanponcedeleon/Dat3M directly as a java
archive (.jar) or built from source code using the Maven build system.

? Jury member.
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int main(void) {
unsigned int x = 1;
unsigned int y = 0;

while (y < 1024) {
x = 0;
y++;

}

__VERIFIER_assert(x == 0);
}

Fig. 1. Benchmark const_1-1.c from the ReachSafety-Loop category.

Last year Dartagnan only participated in the ConcurrencySafety category.
What is new for SV-COMP’21 is that Dartagnan also participates in (part of)
the ReachSafety category for single threaded programs. Many tasks in that cat-
egory contain loops of large bounds which impacts Dartagnan’s performance.
To address the problem, we propose to leverage compiler optimizations.

2 Leveraging Compiler Optimizations

BMC techniques are very sensitive to the program syntax. The loop structure
and the number of variables directly impact the size of the SMT formula (which
tends to relate to solving times). Our approach is to simplify the structure of
the program (while preserving its semantics) before performing the verification.
We do this by using compiler optimizations.

Consider the program in Fig. 1 from the ReachSafety-Loop category. A BMC
tool has to unroll the program 1024 times to prove the program correct. However,
since the value of x is constant at every loop iteration, the assignment can be
moved outside the loop. Since the value of y is never read, the instruction y++
can be removed (using dead store elimination) leading to an empty loop which
can also be removed. Finally, using constant propagation, the assertion can be
re-written as __VERIFIER_assert(0 == 0) which is trivially true.

All these optimizations are implemented in most optimizing compilers. Since
we perform the verification after compiling to LLVM, we get them for free. Due
to the high number of loop iterations, Dartagnan needs more than 15 minutes
to verify the program above. However, by using the -O3 optimization flag in the
C-to-Boogie transformation, the verification task can be solved within seconds.

Using an optimizing compiler has its risks. Most optimizations are unsound
for concurrent programs [7] and we do not use any for ConcurrencySafety. Even
for sequential programs, there is a price to pay. Some optimizations introduce
bitwise operations (e.g. multiplications tend to be compiled to shift operations)
which were not present in the original program. We thus have to encode the
semantics of such operations precisely.
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Fig. 2. Comparing the performance of Dartagnan with different optimization
flags and integer encodings.

3 The Price of Precision

To guarantee soundness when using the aforementioned compiler optimizations
in the ReachSafety category, we use two precise encodings of integers. The first
is a new implementation based on the theory of bit-vectors, where we get bit-
precise reasoning for free. The second was our original implementation and it
is based on the theory of integers. It does an on-demand conversion to bit-
vectors and back (Int2Bv and Bv2Int). We are able to solve more benchmarks
with the theory of bit-vectors than with the theory of integers plus conversion,
which suggests that converting between the theories is expensive. For concurrent
programs, the combination of bit-vectors with Dartagnan’s memory-model-
dependent encoding significantly degrades performance, and we use the theory
of integers throughout the ConcurrencySafety category.

The trade-off between the efficiency of a theory and the precision in modeling
semantics is well-known. In the context of symbolic execution, it was explored
in [4]. SMACK implements an approach to diagnose spurious counterexamples
caused by over-approximations and gradually refines the precision of reasoning
about bitwise operations [3].

4 Evaluation

We evaluated how compiler optimizations and different integer encodings affect
Dartagnan’s verification capabilities for some benchmarks in the ReachSafety
category. We support two levels of optimization: -O0 (no optimization) and -O3
(enables most optimizations). For integer encodings we use two different ap-
proaches: theory of integers + bit conversions (QF_LIA + QF_BV logics) and pure
theory of bit-vectors (QF_BV logic).

It can be seen that, regardless of the chosen integer encoding, using compiler
optimizations allows us to verify many more benchmarks, thus obtaining a higher
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score. The total number of solved tasks with no optimizations (O0+Bit-vectors
and O0+Int-exact configurations from Fig. 2) is 89 with 77 correct and 12 in-
correct results. When using optimizations (O3+Bit-vectors and O3+Int-exact
configurations), we solved 336 tasks with 326 correct and 10 incorrect results.

The experiments show that combining theories to achieve precision is more
expensive than using pure bit-vectors. The total number of solved tasks when
using QF_LIA + QF_BV (configurations O0+Int-exact and O3+Int-exact) is 201
with 187 correct and 14 incorrect results. When using QF_BV (configurations
O0+Bit-vectors and O3+Bit-vectors) we solved 224 tasks with 216 correct
and 8 incorrect results. All encodings are guaranteed to be sound, the incorrect
results are due to bugs in the verifier.

We used the evaluation described above to decide the configuration for
SV-COMP’21. For category ConcurrencySafety, Dartagnan uses the inte-
ger encoding and no compiler optimizations. For categories ReachSafety-Loop,
ReachSafety-BitVectors and ReachSafety-Arrays, it uses the theory of bit-vectors
and -O3 optimizations. These configurations are internally decided by the tool
based on the use of the pthreads library. Compared with SV-COMP’20, we
solved 60 more tasks in ConcurrencySafety (55% increase) and 474 more tasks
overall (582% increase).

Acknowledgement: We thank the SMACK developers for their constant sup-
port with the C-to-Boogie transformation. We also thank Yun Zhang for her
contributions to the development of the witness generation.
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