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This paper focuses on computing minimal test suites for multithreaded programs. Based on previous work on
test case generation for multithreaded programs using unfoldings, this paper shows how this unfolding can
be used to generate minimal test suites covering all local states of the program. Generating such minimal
test suites is shown to be NP-complete in the size of the unfolding. We propose an SMT-encoding for this
problem and two methods based on heuristics which only approximate the solution, but scale better in
practice. Finally we apply our methods to compute the minimal test suites for several benchmarks.
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1. INTRODUCTION
Verification of multithreaded programs is a very challenging problem since the num-
ber of possible combinations of concrete input values and interleavings of threads is
typically so large that exhaustively executing all of them is not practical. There exist
at least three well known techniques that have been used to deal with those problems:
dynamic symbolic execution (DSE) [Godefroid et al. 2005; Sen 2006], partial order re-
ductions (POR) [Godefroid 1996; Valmari 1996] and unfoldings [McMillan 1995]. DSE
handles data values in a symbolic way allowing many concrete inputs values to be
covered with a single execution; PORs techniques establish an equivalence relation be-
tween executions of the programs and explore a subset of all possible interleavings pre-
serving at least one representative per equivalence class; unfolding-based techniques
model executions with partial orders together with a conflict relation to distinguish
between different executions of the system.

In this paper we build on our earlier work on verifying terminating multithreaded
programs using net unfoldings [Kähkönen et al. 2012; Kähkönen and Heljanko 2014b]
which generate a small number of executions that is often even smaller than those

This work is supported by the Academy of Finland project 277522 and the Research Training Group PUMA
of the German Research Council.
Author’s addresses: Olli Saarikivi, Hernán Ponce-de-León, Kari Kähkönen, Keijo Heljanko: Helsinki Insti-
tute for Information Technology HIIT and Department of Computer Science, Aalto University, Helsinki,
Finland; Javier Esparza: Fakultät für informatik, Technische Universität München, Germany.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2010 ACM. 1539-9087/2010/03-ART39 $15.00
DOI: 0000001.0000001

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:2 O. Saarikivi et al.

generated by other partial order reduction methods. The approach also contains DSE,
thus it both minimizes the number of interleavings with unfoldings and the number
of concrete input values with dynamic symbolic testing. As a side effect this technique
also produces a representation of the terminating multithreaded program as a net
unfolding which can be exploited for further test suite optimization tasks, as shown in
this article. Additionally we show how the same optimization can be applied on event
structures representing the unfolding semantics of a multithreaded program.

1.1. Related Work
One popular approach to systematically verify single threaded programs is dynamic
symbolic execution [Godefroid et al. 2005; Sen 2006] which allows all execution paths of
a program to be covered without explicitly executing all input combinations. The input
state is partitioned into equivalence classes triggering the same program behavior
and one input is tested per equivalence class. This approach can also be extended
to multithreaded programs by using a runtime scheduler that controls the execution
of threads [Farzan et al. 2013]; the runtime scheduler can be forced to execute the
execution steps of threads in an specific order.

If one intends to find errors such as assertion violations or deadlocks, it is not nec-
essary to explore every possible interleaving of the program because some of its opera-
tions are independent and the final state after executing them is the same regardless
of the order in which the operations are executed. Execution paths can therefore been
partitioned into equivalence classes called Mazurkiewicz traces [Diekert and Rozen-
berg 1995]. Partial order reduction is one of the techniques that exploit independence
between operations by reducing the number of explored interleavings, but still analyz-
ing at least one representative for each equivalence class [Godefroid 1996]. Recently,
an improvement to this method have been proposed to explore exactly one execution
for each Mazurkiewicz trace [Abdulla et al. 2014].

In Petri net unfoldings [McMillan 1995], each Mazurkiewicz trace of the system is
represented by the notion of maximal configuration. The advantages of both POR and
unfoldings have been recently combined in [Rodrı́guez et al. 2015] where the authors
present another optimal POR algorithm which traverses an event structure rather
than a computation tree as traditional POR approaches. This technique can handle
programs with cyclic state space by using cut-off events; however it cannot handle the
nondeterminism arising from the program accepting inputs from the environment and
reacting to them.

Adding cut-off events when the programs can handle inputs is not a trivial task
since the technique either needs for subsumption checks that use constraint solvers
or storing complete global states rather than using a symbolic representation; such
approaches are considerably heavyweight. A lightweight approach to capture abstract
state information was presented in [Kähkönen and Heljanko 2014a] where states that
are observed during the executions are modeled as a Petri net. This model is then used
to determine if some execution paths lead to an already explored state. This approach
does not capture the complete global states of programs but instead it relies on partic-
ular commutativity of transitions to determine if they lead to already known abstract
states.

Even using techniques such as dynamic symbolic execution or partial order reduc-
tion to alleviate the state space explosion problem, the number of execution paths
typically grows fast. In order to achieve scalability, an alternative approach is to only
cover local states of each thread instead of all the Mazurkiewicz traces. This approach
still allows to test local properties such as assertion violations. The testing algorithm
presented in [Kähkönen et al. 2012] is based on Petri net unfoldings and dynamic
symbolic execution and explores all the reachable local states of threads. This ap-
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proach is extended to contextual nets in [Kähkönen and Heljanko 2014b] allowing
in general a more succinct representation of the execution paths. The algorithm con-
structs a Petri net unfolding on-the-fly and runs new executions while this unfolding
can still be expanded; however it does not execute all possible maximal configurations
(i.e. Mazurkiewicz trace) and thus it can generate less executions than even optimal
POR at the price of only testing local states.

Another POR technique that allows further reductions than optimal ones (but does
not preserve Mazurkiewicz traces) is local first search (LSF) [Niebert et al. 2001]. The
technique was originally designed to optimize the search for local properties in transi-
tions systems by characterizing a restricted subset of traces (called prime traces) that
need to be explored to check such properties. Since the POR algorithms do not have
complete information about the whole state space of the program (this is constructed
while the program is being verified), LFS performs an analysis to detect non prime
traces as soon as possible to avoid their exploration. This is based on a combinatorial
aspect of the independence alphabet of the program. In [Bornot et al. 2002], LFS was
combined with cut-offs events, allowing still further reductions, but not sacrificing the
completeness of the algorithm.

1.2. Contributions
The techniques from [Kähkönen et al. 2012; Kähkönen and Heljanko 2014b] were im-
plemented in a tool called SEDD which allows further reductions than traditional POR
techniques, but still covers all the local states of a multithreaded program. In [Ponce
de León et al. 2015] we focused on the question how far is actually SEDD from the
optimal number of executions needed to cover every local state? We showed that mini-
mizing the number of executions to cover the unfolding representation of the program
is a NP-complete problem and proposed an SMT-encoding to solver this problem. Un-
fortunately such encoding seems not to scale for large programs.

This article extends our previous work by using heuristics to minimize the number
of executions needed to cover all the local states of the program. We show how this
problem can be encoded as two different optimization problems: maximal satisfiability
and finding maximal cliques in a graph. Experiments run on a set of benchmarks
show that those encodings scale better than the SMT-encoding of our previous work
at the price of obtaining an over-approximation rather than an exact solution. Our
experiments suggest that in many of the cases, SEDD generates a number of executions
that might be optimal. We additionally show how programs can be modeled not only
with Petri net unfoldings, but also suing event structures; this allows us to compare
our heuristics against a recently proposed Optimal POR technique.

The rest of the article is structured as following: Section 2 presents the assumptions
on the kind of programs we consider, the basic notions of dynamic symbolic execution,
regular and contextual nets and their corresponding unfoldings; Section 3 explains
how to model a given program with different kinds of nets and event structures; Sec-
tion 4 states the problem of covering all events of an unfolding and gives solutions
based on SMT-encodings; in Section 5 we explain how to obtain approximate solution
to this problem using Max-SAT and maximal cliques of a graph; we conclude in Sec-
tion 6.

2. BACKGROUND
In this section we state our assumptions on the programs we consider and give a brief
overview of the central concepts needed to understand the rest of the paper.
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Thread ::= Stmt∗ (thread)
Stmt ::= lv := e | SV := lv | SV := c | (statement)

while (b) {Stmt} |
if (b) then {Stmt} else {Stmt} |
lock(lc) | unlock(lc) | error |
end | Stmt ; Stmt

e ::= lv | SV | c | lv op lv | input() (expression)
b ::= true | false | (boolean expression)

lv = lv |lv 6= lv |
lv < lv | lv < lv | lv ≤ lv |lv ≥ lv

lv is a local variable,
SV is a shared variable,
lc is a lock identifier, and
op ∈ {+,−, ∗, /,mod, . . . },
c is a constant

Table I: Syntax of multithreaded programs.

2.1. The program under test
To simplify the presentation, we introduce a simple multithreaded language with
integer-valued variables. The syntax of this language is shown in Table I and can be
seen as a subset of imperative programming languages such as C or Java. There are
two types of variables in the language: variables local to a thread and shared variables.
To differentiate the variable types, we write local variables with lowercase letters and
shared variables with capital letters. We assume that a thread can use a shared value
only by assigning it first to a local variable. Similarly we assume that a thread can
update a shared value only by assigning to it either a constant value or a value from a
local variable. Programs written with proper programming languages can be automati-
cally modified to satisfy these assumptions. For example, an if-statement that depends
on a value of a shared variable can be replaced with statements that read the value of
the shared variable to a temporary local variable and then branch the execution based
on the value of the temporary variable.

We consider programs with an acyclic state space (programs which terminate),
where the number of threads and shared variables is fixed and the only nondetermin-
ism is given by the concurrent access to shared variables and by input data from the
environment (the input() expression in Table I). The termination assumption is made
since even if unfoldings can deal with systems containing cyclic state spaces by using
the so-called cut-off events, adding then is not a trivial task when the programs can
handle inputs since the technique needs either to store complete global states (instead
of using symbolic representation) or use subsumptions checks which are very expen-
sive in practice. The non dynamically-created threads assumptions is due to the way
programs are represented using regular unfoldings (see Section 3.1) where each thread
location is represented by a Petri net place and thus the total number of threads must
be known a-priori. This assumption can be dropped is one uses instead the contextual
unfolding modeling [Kähkönen and Heljanko 2014b]; in this article we make such an
assumption to compare all the proposed ways to model programs. We also assume that
the operations accessing shared memory are sequentially consistent; this is a widely
used assumption in verification and even if in recent years it has been relaxed (see for
example [Abdulla et al. 2015; Abdulla et al. 2016]) the implications of such relaxation
in the behavior of the program are beyond the scope of this article.
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The states of the program consist of local states of the threads and the program’s
shared state; those states are modified by the execution of operations. Operations are
divided into invisible operations which only access the local state of a thread and visi-
ble operations which access the global state of the program and are the only operations
that can directly affect the execution in other threads. Visible operations include ac-
quire and release of a lock and reading from or writing to a shared variable. Read
operations access the value of a shared variable, may compute new values using inte-
ger arithmetics and assign the final value to a variable in the local state of the thread
performing the operation. Write operations assign either a constant or a value from a
local variable to a shared variable. The following notions are central for the rest of the
article.

Definition 2.1. A test is a set of input values and a schedule; an execution is a
sequence of program operations and a test suite is a set of executions.

Notice that we use the term test, but our focus is on verification (a.k.a exhaustive
testing) techniques.

2.2. Dynamic symbolic execution
Dynamic symbolic execution (DSE) or concolic testing [Godefroid et al. 2005; Sen 2006]
is a test generation approach which executes a program both concretely and symbol-
ically at the same time. The concrete execution corresponds to the execution of the
actual program and the symbolic execution computes constraints on values of the vari-
ables in the program by using symbolic values that are expressed in terms of inputs to
the program. At each branch point in the program’s execution, the symbolic constraints
specify the input values that cause the program to take a specific branch. As an exam-
ple, executing a program x = x+ 1; if(x > 0); generates constraints input1 + 1 > 0 and
input1 + 1 ≤ 0 at the if-statement assuming that the symbolic value input1 is assigned
initially to x. A path constraint is a conjunction of the symbolic constraints correspond-
ing to each branch point in a given execution path. All input values that satisfy a path
constraint will explore the same execution path and therefore it is not necessary to try
them all. If an execution goes through multiple branch points that depend on the input
values, a path constraint can be constructed for each of the branches that were left un-
explored along the execution path allowing to try other branches in another execution.
These constraints are typically solved using SMT-solvers in order to obtain concrete
values for the input symbols. This allows all the feasible execution paths through the
program to be explored systematically.

2.3. Petri nets and their unfoldings
Some of the approaches presented in the next section consist of modeling the observ-
able behavior of a multithreaded program with different kinds of net unfoldings. Dif-
ferent ways of modeling programs will be presented and in the following we describe
the basic concepts needed to understand them.

Regular nets. A net is a triple (P, T, F ) where P and T are disjoint sets of places
and transitions and F ⊆ (P ×T )∪ (T ×P ) is a flow relation. Places and transitions are
called nodes and elements of F arcs. The preset and postset of a node x are respectively
defined as •x := {y | (y, x) ∈ F} and x• := {y | (x, y) ∈ F}. A marking of a net is
a mapping P → N. A Petri net is a tuple N := (P, T, F,M0) where M0 is the initial
marking of the net (P, T, F ). Graphically markings are represented by putting tokens
on circles that represent the places of a net. We restrict to the so-called safe nets where
each marking puts zero or one token at each place. A transition t is enabled in any
marking that puts tokens on all the places in the preset of t. The causality relation
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< in a net is the transitive closure of F while its reflexive and transitive closure is
denoted by ≤. The set of causes of a node x is defined as bxc := {t ∈ T | t ≤ x}. Two
nodes x and y are in conflict (denoted by x#y) if there are transitions t1 6= t2 such that
•t1 ∩ •t2 6= ∅ and t1 ≤ x and t2 ≤ y.

In the same way a directed graph can be unrolled into a tree that represents all
paths through the graph, a Petri net can be unrolled into an acyclic net called an
occurrence net. An occurrence net is an acyclic net (B,E,G) where B and E are called
conditions and events and G is the partially ordered flow relation. The occurrence net
also satisfies the following conditions: (i) for every b ∈ B, |•b| ≤ 1; (ii) for every x ∈ B∪E
the set bxc is finite; and (iii) no node is in conflict with itself.

A branching process is a tuple (O, l) := (B,E,G, l) where l : B∪E → P ∪T is a label-
ing function such that: (i) l(B) ∈ P and l(E) ∈ T ; (ii) for all e ∈ E, the restriction of l
to •e is a bijection between •e and •l(e); (iii) the restriction of l to Min(O) is a bijection
between Min(O) and M0, where Min(O) denotes the set of minimal elements with re-
spect to the causal relation; and (iv) for all e, f ∈ E, if •e = •f and l(e) = l(f) then e = f .
The labeling l relates each event and condition with its corresponding transition and
place in the (folded) net. The branching process represents symbolically all the possi-
ble interleavings between transitions of the net. Different branching processes can be
obtained by stopping the unrolling process at different depths. The maximal (possibly
infinite when the state space is cyclic) branching process is called the unfolding of a
Petri net.

Given an unfolding (B,E,G), any causally closed and conflict-free set of events forms
a configuration: C ⊆ E is a configuration iff (i) e ∈ C ∧ e′ ≤ e ⇒ e′ ∈ C, and (ii)
e ∈ C ∧ e#e′ ⇒ e′ 6∈ C. Configurations of the unfolding represent executions paths.

Example 2.2. Fig. 1 presents two unfolding modeling the behavior of a program
with two threads reading a shared variable X. The first unfolding keeps only one copy
of the variable (conditions labeled by x) while the second one keeps local copies for
each thread (conditions labeled by x1 and x2). Tokens represent permission to access
the variable or one of its local copies. The first unfolding only allows serialized access
to the shared variable (since both events need to consume the permission token) while
read operations are considered independent in the second unfolding; this is done by
replicating the conditions representing the variable x to avoid their preset to intersect;
for each variable there is one condition representing it for each thread. Events r1 and r4
are causally related (r1 < r4) since r1 produces a token consumed by r4; events r1 and
r2 are in conflict (r1#r2) since both events consume the same token in the condition
in the intersection of their presets. Events r5 and r6 are neither causally related nor
in conflict and are called concurrent (r5 co r6). The configurations {r1, r4} and {r2, r3}
of the first unfolding show the two possible ways in which the read operations can be
sequentially executed in (a) while the only maximal configuration {r5, r6} of the second
unfolding shows that the operations can be done independently in (b) and thus both
possible orderings are linearizations1 of the configuration.

Contextual nets. Even if unfoldings allow to represent the possible interleavings
between transitions of a Petri net in a compact way, this representation can be done
more succinctly by extending regular nets with read arcs [Montanari and Rossi 1995].
A contextual net (c-net) is a tuple (P, T, F,C), where (P, T, F ) is a regular net and
C ⊆ P × T is a context relation which elements are called read arcs. The context of
a transition t is defined as t := {p | (p, t) ∈ C}. The causality relation < in a c-net is
the transitive closure of F ∪ {(t, t′) ∈ T × T | t• ∩ t′ 6= ∅}. Two transitions t and t′ in
a c-net are in asymmetric conflict, denoted by t ↗ t′, iff (i) t < t′, or (ii) t ∩ •t′ 6= ∅, or

1A linearization is a totally ordered extension of the order imposed by ≤.
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Thread 1: Thread 2:
b = X; c = X;

end end

r1b=0 r2 c=0

r3b=0 r4 c=0

thread1 thread2

x

x

x

(a)

r5b=0 r6 c=0

thread1 thread2

x1 x2

x1 x2

(b)

Fig. 1: An example program with its unfolding representation with (a) serialized access
to shared variables and (b) place replication.

(iii) t 6= t′ ∧ •t ∩ •t′ 6= ∅. The asymmetric conflict t ↗ t′ represents the fact that in any
execution where both t and t′ happen, t should precede t′.

As in the case of regular nets, c-nets can be unfolded into an acyclic c-net describing
all the possible paths from its initial marking. A contextual occurrence net is an acyclic
c-net (B,E,G,C) such that: (i) for every condition b we have |•b| ≤ 1, (ii) the causal
relation is irreflexive and its reflexive closure ≤ is a partial order such that bxc is
finite for any node x ∈ B ∪ E, and (iii) and↗bec is acyclic for every e ∈ E.

The configurations of a contextual unfolding are formed by causally-closed (consid-
ering both the flow relation and the context) and↗-cyclic-free sets of events.

Example 2.3. Fig. 2 shows a program with three threads, two of them reading a
shared variable and a third one writing it. The behavior of this program is represented
by a regular unfoldings in (a). The same program can be modeled by the c-net in (b)
using read arcs (drawn as dashed lines in the figures). In the unfolding (a) the exe-
cution of a read operation is modeled by an event which generates a new condition
representing the variable. All these conditions enable new write operations and four
events (w1 - w4) are added to the unfolding. In the case of c-nets, the read operations
can be modeled with read arcs and since new variable conditions are not generated,
only one event is necessary to model the write operation.

2.4. Event structures
The unfolding of a net is normally represented by an occurrence net, however one can
replace conditions by two relations representing the causality and conflict information;
this gives rise to event structures which are isomorphic to occurrence nets [Nielsen
et al. 1981]. A labeled event structure over an alphabet L is a 4-tuple E := (E,≤,#, λ)
where (i) E is a set of events; (ii) ≤ ⊆ E × E is a partial order (representing causality)
satisfying the property of finite causes: for all e ∈ E, we have bec := {e′ ∈ E | e′ ≤ e} is
finite; (iii) # ⊆ E × E is an irreflexive symmetric relation (representing conflict) satis-
fying the property of conflict heredity: for all e, e′, e′′ ∈ E, if e#e′ and e′ ≤ e′′ then e#e′′;
and (iv) λ : E → L is a labeling function. As in the case of occurrence nets, configura-
tions are causally-closed and conflict-free set of events representing executions. The set
of configurations of E is denoted by C(E). Given two event structures E := 〈E,≤,#, λ〉
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Thread 1: Thread 2: Thread 3:
b = X; X = 5; c = X;

end end end

r1 r2 r3 r4 r5 r6w1 w2 w3 w4

thread1 thread2 thread3x1 x3x2

(a)

thread1 x thread2 thread3

r4b=5 r1b=0 wx=5 r2c=5 r3c=0

(b)

Fig. 2: Regular and contextual unfolding of a program.

and E ′ := 〈E′,≤′,#′, λ′〉 we say that E is a prefix of E ′, denoted by E � E ′, when E ⊆ E′
and ≤,#, λ are projections of ≤′,#′, λ′ over E.

In the same way occurrence nets are isomorphic to event structures, contextual oc-
currence nets are isomorphic to asymmetric event structures, an extension of event
structures where the symmetric conflict is replaced by an asymmetric one [Baldan
et al. 2001]. The encodings for contextual nets presented in this article can be easily
translated to asymmetric event structures.

Example 2.4. Fig. 3 shows three event structures representing the same behaviors
as the occurrence nets of Fig. 1 (a) and (b) and Fig. 2 (a). Direct causalities and direct
conflicts2 are drawn respectively by arrows and dashed lines. Observe that there is a
causal relation between two events e1, e2 if there is a condition b in the occurrence net
such that b ∈ e1• and b ∈ •e2. Similarly, there is a direct conflict in the event structure
between e1 and e2 if there exists a condition b ∈ •e1 ∩ •e2 in the occurrence net.
The event structure (c) from the right-most part of the figure has three configurations
{r3, r4, w2}, {r4, w4, r6}, {r3, w3, r1} and {w1, r2, r5} representing the four non-equivalent
ways to interleave the operations of the program in Fig. 2 (the program contains six
executions but those with consecutive reads lead to equivalent states).

2Direct causality is the transitive reduction of ≤ and direct conflict is the smallest relation inducing #
through the property of conflict heredity.
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r4 r3

r1 r2

(a)

r5 r6

(b)

w1

r2 r5

w4

r6

w3

r1

r4 r3

w2

(c)

Fig. 3: Event structures.

3. MODELING MULTITHREADED PROGRAMS
Most POR techniques represent the execution paths of a program with its computa-
tion tree where every interleaving is explicitly represented. However, to exploit the
independence between some operations, unfoldings (either as occurrence nets of event
structures) can be used to obtain a more succinct representation in many cases. In the
occurrence net representation, shared variables, locks and local states of threads are
represented with conditions while operations are represented with events. Each event
represents the execution of the statements of a visible operation and any subsequent
invisible operations from the same threads. Note how this definition groups the execu-
tion of any invisible operations together with the previous visible one, thus omitting
the interleavings of invisible operations. As typical with approaches that used DSE,
we do not model the local operations of threads unless their result depends on input
values.

POR techniques use an independence relation to define equivalence classes of ex-
ecutions; the independence relation allows to represent executions as partial orders
instead of sequences. Since a collection of partial orders (or executions in our setting)
can be compactly represented by event structures [Ponce de León and Mokhov 2015],
the semantics of a multithreaded program can be given by an event structure where in-
dependent operations generate concurrent events and dependent ones generate either
causally related or conflicting events. These semantics for multithreaded programs
were introduced in [Rodrı́guez et al. 2015] and are parametric in the independence
relation. For example if one sets reads operations to be dependent, Fig. 3 (a) will be
generated for the program in Fig. 1; in this event structure, events representing reads
are either in conflict or causally dependent. However if one sets reads as independent,
Fig. 3 (b) would be obtained where events are concurrent.

We present four different ways to model a program, three using Petri nets and
one using event structures: the first approach (which we call naive) does not take
into account that concurrent reads to the same shared variable can be done indepen-
dently; the second approach uses a technique called place replication to avoid unneces-
sary dependencies between reads in occurrence nets (both techniques were introduced
in [Kähkönen et al. 2012]); the third approach uses contextual nets which may re-
duce the size of the unfolding by introducing read arcs (this is the technique used
in [Kähkönen and Heljanko 2014b]); the final representation (given by [Rodrı́guez
et al. 2015]) uses event structures with events labeled by operation of the program
and is parametric on the independence relation over those operations.

For the Petri net representation, we assume that there is for each thread a set of
conditions for each program location (i.e. program counter values) the thread can be in
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(a) local branch

pc

pc′ pc′′

true false

(b) acquire lock

pc

pc′

l

(c) release lock

pc

pc′
l

(d) naive read and write
contextual write

pc

pc′

x

x

(e) read with place replication

pc

pc′

xi

xi

(f) write with place replication

pc

pc′

x1

x1

xn

xn

. . .

. . .

(g) contextual read

pc
x

pc′

Fig. 4: Modeling programs with unfoldings.

and thus thread cannot be dynamically created. We also assume that there is a set of
conditions for each lock in the program. The constructs of Fig. 4 can be used to model
a program as an occurrence net by initially constructing conditions for each thread,
shared variable and lock that exists in the initial part of the program. A marking
containing these conditions represents the initial state of the program. The constructs
(a),(b) and (c) in Fig. 4 represent symbolic branching of the program depending on
inputs and acquiring or releasing locks for any of the Petri net modeling approaches.
Sections 3.1 and 3.2 explain how reading from and writing to shared variables can be
modeled with different kinds of nets and assumptions. Finally in Section 3.3 we show
how the behavior of a multithreaded program can be modeled by an event structure.

3.1. Modeling programs with regular unfoldings
A naive way to model access to a shared variable using regular unfoldings is to asso-
ciate each variable with a condition and then every read or write event consumes it
and produces a new condition representing the variable (see Fig. 4 (d)). The executions
of the simple program of Fig. 1 with a shared variable and two threads reading it can
be modeled by the unfolding (a). This unfolding shows that the naive approach only
allows serialized access to the shared variable even if they are reads, i.e. it contains
two possible executions r1 · r4 and r2 · r3 represented by its configurations.

To avoid the serialized access of reading operations, shared variable conditions can
be duplicated for each thread: each shared variable is modeled by n conditions, where
n is the number of threads in the program. A write transition is made to access each
of the n copies while a read transition accesses only the local copy belonging to the
thread performing the read (see Fig. 4 (e) and (f)). This approach is known as place
replication [Farzan and Madhusudan 2006] and it has the effect that two concurrent
reads of the same shared variable become independent. Fig. 1 (b) shows the unfolding
modeling the program with place replication; the events representing the read opera-
tions become independent and the two executions of the program, i.e. r5 · r6 and r6 · r5,
can be obtained as linearizations of its unique configuration {r5, r6}. This unfolding
contains only two events instead of four as in the naive case.

One of the disadvantages of the place replication technique is that it forces to fix
the number of threads in the program and thus dynamic creation of threads is not
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supported. Programs with thread creation can be modeled by using contextual nets as
shown in [Kähkönen and Heljanko 2014b].

3.2. Modeling programs with contextual occurrence nets
Even if the place replication technique allows to represent the independence between
concurrent reads, it may generate unnecessary instances of a write operation. Consider
the program of Fig. 2 where two threads read a shared variable and a third one writes
it. The unfolding (a) is the one obtained using place replication and the constructs (e)
and (f) of Fig. 4. There are four different instances (w1-w4) of the write operation which
correspond to the four ways to interleave the access to the shared variable.

In order to obtain a smaller unfolding, contextual nets can be used. The shared
variable places are no longer replicated for each thread (recall that the reason for the
place replication is to make two concurrently enabled read operations independent in
the unfolding). With contextual nets read operations can be modeled using read arcs.
The construct for a write transition is the same as in the naive approach with regular
nets while read transitions have shared variable conditions in their context (see Fig. 4
(d) and (g)). The program of Fig. 2 can be modeled by the c-net (b). Notice that the
four instances of the write operation are replaced by a single write event, but the four
non-equivalent ways to interleave the executions of the program are still represented
by the four configurations of the c-net.

3.3. Modeling programs with event structures
Given a multithreaded program with its operations in T and an independence relation
2 ⊆ T × T over the operations (the complement of 2 is called a dependence relation
and defined as � := (T × T )\ 2), we define a labeled event structure E where each
event represents firing an operation in the program and each execution corresponds
to a linearization of a configuration; by abuse of notation we denote by state(C) the
state reached after executing the operations related to the events in C (preserving the
causal order, if any) and we say that an operation t ∈ T is enabled at state(C) if the
program can perform such operation in the corresponding state.

Each event of E is identified inductively as e := 〈t,H〉 where t is an operation of the
program (i.e. the label of e over λ) and H a configuration of E ; event e represents the
occurrence of operation t after the history H. For an operation t and an event structure
E , we define the set Ht ⊆ C(E) of candidates histories for t as the maximal subset such
that if H ∈ Ht then

— operation t is enabled at state(H), and
— either H := {⊥} or for every ≤-maximal event e ∈ H we have λ(e) � t.

Once the event e has been added to the event structure we need to check that its
operation is not dependent with the operation of some event e′ already present in E
which was not in the history of e. Since both operations are dependent, their order
is important and we need to prevent them to be part of the same configuration; for
this we introduce a conflict between both events. The set of conflicting events for e is
denoted by Ke and contains any event e′ such that e 6∈ be′c, e′ 6∈ bec and λ(e) � λ(e′).
Intuitively, they represent dependent operations not happening in the same execution.

Given a program and an independence relation 2, the set of its finite unfolding pre-
fixes is the smallest set of event structures such that

(1) 〈{⊥}, ∅, ∅, λ〉 with λ(⊥) := ε is an unfolding prefix.
(2) Let E be an unfolding prefix with a history H ∈ Ht for some operation t, the event

structure resulting from extending E with a new event e := 〈t,H〉 and satisfying
— for all e′ ∈ H we have e′ < e,
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— for all e′ ∈ Ke we have e′#e, and
— λ(e) := t
is also an unfolding prefix.

The unfolding of the program is the unique �-maximal element in the set of unfolding
prefixes under 2. It has been proven in [Rodrı́guez et al. 2015] that such unfolding
always exists and it is unique. Moreover for every non-empty execution σ of the system
there exists an unique configuration C such that σ is an interleaving of C.

In Fig. 3, the event structures (a) and (b) are obtained from the program in Fig. 1 set-
ting the read operations as dependent and independent respectively. The event struc-
ture in (c) is the one obtained for the program in Fig. 2 when the reads are considered
independent.

3.4. Program unfolding
We have shown how to model a program using regular and contextual occurrence nets
or event structures; all of them representing all the possible ways in which operations
of the program can be interleaved. Each unfolding represents all the possible execu-
tions of the program since any linearization of a configuration (i.e. any total order
between its events that respects their causal order) represents an execution of the pro-
gram. Even if a program has different representations, any execution of the program
can be obtained as the linearization of some configuration in any unfolding. For each
of the unfolding representations, every maximal (w.r.t set inclusion) configuration cor-
responds to a Mazurkiewicz trace of the program. If one considers read operations as
independent in the program of Fig. 2, this program contains four Mazurkiewicz traces
representing the final states

b = 0, c = 0 b = 0, c = 5 b = 5, c = 0 b = 5, c = 5

These traces correspond to the four maximal configurations of each of the unfoldings:

{r3, r4, w2}, {r3, w3, r1}, {r4, w4, r6}, {w1, r2, r5}
for the regular unfolding in Fig. 2(a) and the event structure in Fig. 3(c), and

{r1, r3, w}, {r1, w, r2}, {r3, w, r4}, {w, r4, r2}
for the contextual unfolding in Fig. 2(b).

If one is interested only in the local states of the threads, it can be observed that
Thread 1 and Thread 3 only have two local states: b = 0 or b = 5 and c = 0 or c = 5.
Partial order reduction techniques preserving Mazurkiewicz traces do not take into
account local states of threads and therefore any algorithm would explore at least four
executions paths for this program. In the next section we show how to reduce the
number of executions in the program while covering every local state of the threads.

4. MINIMAL TEST SUITES FOR LOCAL REACHABILITY
The goal of this section is, given an unfolding representation of a multithreaded pro-
gram, compute the minimal test suite covering every event. This is equivalent to cov-
ering all local states of the program and can thus be seen as a coverage criteria. Notice
also that by the unfolding constructors in Fig. 4, branch decisions are represented by
events and thus covering every event guarantees also branching coverage.

We show that the problem of covering every event is NP-complete in the size of the
unfolding and propose a solution to compute such test suite using an SMT-encoding. If
in addition to the unfolding, the information about which statements are executed by
each event is given, the encoding can be modified to minimize the test suite covering
every statement of the program.
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The results of this and the following section are given in terms of regular and con-
textual occurrence nets; however due to the isomorphism between them and event
structures or asymmetric event structures, such results also hold for the modeling of
programs presented in Section 3.3.

4.1. Events covering
Given the unfolding representation of a multithreaded program, we define the follow-
ing decision problem to cover the unfolding with a fixed number of executions.

Definition 4.1 (EVENTS-COVER). Given an unfolding U := (B,E,G,C) and an in-
teger k, decide if there exists a set {C1, . . . , Ck} of configurations of U covering E.

Deciding if there exists a set of k configurations that covers every event in the un-
folding is an NP-complete problem.

THEOREM 4.2. EVENTS-COVER is in NP.

PROOF. We create a nondeterministic algorithm with a polynomial running time.
The requirements for the set {C1, . . . , Ck} are:

— each Ci is a configuration,
—

⋃
i≤k

Ci = E

Algorithm 1 first guesses a set of k subsets of E, thus the amount of nondetermin-
ism needed is polynomial in the size of the inputs. Then the algorithms checks that
the conditions mentioned above are fulfilled. All the loops of the program have a poly-
nomial upper bound on the number of iterations in the size of the input (both k and ni
are smaller than |E|), and thus the program has a polynomial running time after the
nondeterministic initial guess has been made. To simplify the presentation we use two
subroutines CAUSALLY -CLOSED(e, C) and CONFLICT (e, e′). The first one returns
true iff all the events in the past of e are in C; the other returns true iff events e and e′
are in conflict. For regular unfolding, the latter can be checked by traversing the past
of both events and checking if there exist e1 ≤ e and e2 ≤ e′ such that •e1 ∩ •e2 6= ∅.
For a contextual unfolding, we need to check that there exist no cycles of asymmetric
conflict containing e and e′: the direct graph G := (V,A) were V := E and (e, e′) ∈ A
iff e ↗ e′ is polynomial w.r.t the size of the unfolding and we can detect cycles with
complexity O(|V |+ |A|).

THEOREM 4.3. EVENTS-COVER is NP-hard.

PROOF. We show a reduction from the graph coloring problem to EVENTS-COVER;
since a regular unfolding is also a contextual one with an empty context, we construct
a regular unfolding in the reduction. Let G be a graph with set of vertices V and edges
A, we construct an unfolding U := (B,E,G,C) in the following way:

— for each vertex v ∈ V there is an event ev in E and conditions cv, c′v in B such that
cv ∈ •ev and c′v ∈ ev•, and

— for each edge a := (v1, v2) ∈ A there is a condition ca in B with ca ∈ •ev1 ∩ •ev2 .

The resulting unfolding has not causal dependencies, i.e. ≤ := ∅, and ev1# ev2 ⇔
(v1, v2) ∈ A (which is equivalent to ev1 co ev2 ⇔ (v1, v2) 6∈ A). It is easy to see that
the created net is linear in the size of the input graph and it is also straightforward to
generate it in polynomial time.

We claim that G is k-colorable iff E is covered with k configurations.
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ALGORITHM 1: EVENTS-COVER is in NP
Input: An unfolding net U := (B,E,G,C) and an integer k
Output: accept/reject.
Guess a set of sets {C1, . . . , Ck} where Ci := {ei1, . . . eini

} ⊆ E ;
for i := 1 . . . k do

for j := 1 . . .ni do
if ¬CAUSALLY -CLOSED(eij , Ci) then reject;
;
for l := 1 . . .ni do

if CONFLICT (eij , eil) then reject;
;

for e ∈ E do
found := False;
for i := 1 . . . k do

if e ∈ Ci then found := True;
;

if ¬found then
reject

accept

⇒) Given a coloring of G, let Vi be the set of vertices colored by i. For every pair of
vertices v1, v2 ∈ Vi we know that (v1, v2) 6∈ A (if they have the same color, they
cannot be adjacent) and therefore Vi represents a conflict-free set of events. Since
≤ = ∅, every Vi represents a causally-closed set and it follows that it represents a
configuration. Since every vertex is colored using k colors, every event is covered
with just k configurations.

⇐) Suppose we have a set of configurations {C1, . . . , Ck} such that every event e ∈ E
belongs to at least one configuration and let ev1 , ev2 be two events of Ci. Events
in the same configuration are not in conflict, then (v1, v2) 6∈ A and v1, v2 can be
colored with the same color. It follows that for every event ev in Ci the vertex v can
be colored by i. We need one color per configuration (only k) and since every event
belongs to at least one configuration, every vertex is colored; i.e. G is k-colorable.

Fig. 5 shows an example of the reduction from graph coloring to EVENTS-COVER.
The graph has a clique (complete maximal subgraph) of size 3 composed by vertices
{v1, v2, v3} and therefore at least 3 colors are needed. The Figure shows a way to
color the vertices using 3 colors and thus it is minimal. We have C1 := {v1, v4}, C2 :=
{v2, v5}, C3 := {v3} and therefore the sets {e1, e4}, {e2, e5}, {e3} are configurations cov-
ering the net.

Example 4.4. Consider the program of Fig. 2. Clearly if we represent the program
with a regular unfolding and the naive approach, this representation would explic-
itly enumerate all the six possible interleavings accessing the place representing the
shared variable; events representing the write operation would be pairwise in conflict
and therefore at least 6 executions are needed to cover every event using this repre-
sentation. A similar analysis can be done in the unfolding of Fig. 2 (a) and at least 4
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Fig. 5: Reduction of graph coloring to EVENTS-COVER.

executions are needed to cover events w1-w4. If one considers the contextual represen-
tation of the program in Fig. 2 (b), every event can be covered executing, for example,
all the reads first (r1 · r3 · w) and executing the write before any read (w · r2 · r4). We
will see that these are not only lower and upper bounds respectively for the number of
executions, but actually the minimal number of executions needed to cover the unfold-
ings.

4.2. SMT-encoding of EVENTS-COVER
This section shows how to encode the EVENTS-COVER problem for regular and con-
textual unfoldings with SMT based on the encodings of their configurations [Esparza
and Heljanko 2008; Rodrı́guez 2013; Kähkönen 2015] and additional formulas that
capture the path constraints.

In order to cover every event of the unfolding with k configurations, we need to find
k configurations (this can be done by copying k times the configuration encoding) such
that every event belongs to at least one configuration.

Given an unfolding U := (B,E,G,C) and an integer k, we encode the EVENTS-
COVER problems using variables ϕe,i for each event e ∈ E and i ≤ k.

The following formula represents causal dependence; for each event e and each i ≤ k:

ϕe,i ⇒
∧

e′∈•(•e)

ϕe′,i (C1)

Since the constraints generated at each branching point are mutually exclusive (one
event represents the constraint being true and the other the constraint being false
as shown in Fig. 4 (a)), the variables representing inputs of the program need to be
renamed. Let gi be the constraint g where each variable input has been renamed as
inputi. For each branching event e with a symbolic constraint g and each i ≤ k we
have:

ϕe,i ⇒ gi (C2)

The following constraint encodes conflict-freeness for regular unfoldings; for each
condition c, each event e ∈ c• and each i ≤ k:

ϕe,i ⇒
∧

e′∈c•\{e}

¬ϕe′,i (C3)
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Finally each event should be part of at least one configuration; for each event e:∨
1≤i≤k

ϕe,i (EC)

For regular occurrence nets the EVENTS-COVER problem can be encoded as the
conjunction of formulas (C1)-(C3),(EC). To extend the encoding for contextual nets,
we need to consider read arcs: if a read event is fired, the write event that has most
recently updated the value being read must have been fired.

For each read event e and each i ≤ k we have:

ϕe,i ⇒
∧

e′∈•e
ϕe′,i (R1)

An encoding consisting of formulas (C1)-(C3) and (R1) is an over-approximation of
the configurations because the encoding does not take into account possible ↗-cycles.
To accurately capture configurations of a contextual unfolding, additional constraints
are needed that make the translation unsatisfiable if a configuration contains a ↗-
cycle. To complete the translation, let ne,i be a natural number associated with event
e in configuration i ≤ k. Intuitively the numbers associated with events describe the
order in which they must be fired in their corresponding configurations. The firing
order that eliminates↗-cycles can then be expressed with the following formulas.

For each event e and each i ≤ k:

ϕe,i ⇒
∧

e′∈•(•e)∪•e

ne′,i < ne,i (R2)

For each read event e, write event e′ and each i ≤ k:

ϕe,i ⇒
∧

•e′∩e 6=∅

ne,i < ne′,i (R3)

The formulas above have the following meanings: for any event e, all the events that
put tokens in its preset and context should be fired before e; and whenever a condition
in the preset of a write event is part of the context of a read event, the read should be
fired before the write.

When the acyclicity constraints are encoded in SAT [Rodrı́guez 2013; Khomenko
et al. 2006], the size of the encoding isO(n log n) in the best case. However the formulas
(R2) and (R3) are linear in the size of the unfolding using the expressivity of SMT.

Example 4.5. Example 4.4 gives lower bounds to the EVENTS-COVER problem us-
ing the regular unfoldings of the program in Fig. 2. Using the encoding (C1)-(C3),(EC)
for k = 6 and k = 4 respectively, we obtain that the formulas are satisfiable and then
the minimal numbers of executions to cover every event using the naive and place
replication approach are respectively 6 and 4. Theorem 4.4 also gives a possible solu-
tion to cover every event in the contextual representation with two executions. If the
encoding (C1)-(C3),(R1)-(R3),(EC) is used with k = 1, the formula is unsatisfiable and
the unfolding cannot be covered with only one execution. We can conclude that the
given solutions are optimal.

4.3. Statement Coverage
The encoding above shows how to cover the unfolding representation of a multi-
threaded program. However, different representations give minimal test suites of dif-
ferent size for the same program. This is due to the difference in the expressive power
of each formalism: for example in Fig. 2 (a), every read event must consume from a
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variable condition and generates a new one which in turns generates the creation of
several write events. This does not happen in Fig. 2 (b) since contextual nets allow to
model the read of a variable without creating new conditions. The difference in the test
suites sizes is due to the fact that the EVENTS-COVER problem is defined in terms of
one particular representation (one unfolding) and not in terms of the program itself.

One interesting problem defined directly on program is what is it the minimal num-
ber of executions needed to cover all the statements? Notice that if in addition of the
unfolding we have information about which statements are covered by each event, we
can minimize the executions not to cover each event, but rather each statement of the
program. Suppose we have a mapping stat from the statements of the program to the
set of events in its unfolding that execute those statements. A statement j is covered if
any of the events in stat(j) is covered by some configuration of the unfolding. Condition
(EC) can be replaced by the following formula; for every statement j:∨

e∈stat(j)
i≤k

ϕe,i (SC)

The formula above does not require that every event is covered as in the case of
EVENTS-COVER, but at least one event should be covered for each statement. In
general fewer executions are needed to cover every statements than to cover every
event.

Example 4.6. Suppose the following labeling relates every event in Fig. 2 (a) with
the statements of the program:

statement events
b = X r1, r2, r3
X = 5 w1, w2, w3, w4

c = X r4, r5, r6

Using formulas (C1)-(C3),(SC) for k = 1 we obtain the encoding of Fig. 6 which is
satisfiable for example for ϕw1

, ϕr2 , ϕr5 and thus every statement can be covered with
only one execution. The same result can be obtained using the naive representation of
the program and the contextual one.

Causal clauses: Conflict-freeness: Statement covering:

ϕw2
⇒ ϕr3 ∧ ϕr4

ϕw3 ⇒ ϕr3
ϕw4 ⇒ ϕr4
ϕr1 ⇒ ϕw3

ϕr2 ⇒ ϕw1

ϕr5 ⇒ ϕw1

ϕr6 ⇒ ϕw4

ϕw1
⇒ ¬ϕr3 ∧ ¬ϕr4

ϕw3
⇒ ¬ϕr4

ϕw4 ⇒ ¬ϕr3
ϕr3 ⇒ ¬ϕw1 ∧ ¬ϕw4

ϕr4 ⇒ ¬ϕw1 ∧ ¬ϕw3

ϕr2 ∨ ϕr3 ∨ ϕr6
ϕr1 ∨ ϕr4 ∨ ϕr5
ϕw1 ∨ ϕw2 ∨ ϕw3 ∨ ϕw4

Fig. 6: SMT-encoding for statement covering using the place replication representation.

Following the same idea, if one considers an occurrence net being the unfolding of a
Petri net, there is a mapping between events and transitions (each event is an instance
of a transition in the original net). We have proven in [Ponce de León et al. 2015]
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that covering the executable transitions of any terminating safe Petri net is also NP-
complete in the size of its unfolding and we have shown how to encode such a problem
into SMT.

The EVENTS-COVER problem is stated for a particular unfolding of the program
and allows different minimal test suites depending on the given representation of the
program. However, to achieve statement coverage we reason about different ways to
interleave the statements of the program. Since every interleaving is represented sym-
bolically in every unfolding, the size of a minimal test suite covering every statement
of the program is the same despite its unfolding representation.

4.4. Experiments
We compare the test suites obtained by the SEDD tool [Kähkönen et al. 2012;
Kähkönen and Heljanko 2014b] with the ones obtained by the encodings to execute
every event of the unfolding (using place replication and contextual nets) and every
statement of the program. The encodings were run with the Z3 SMT-solver [de Moura
and Bjørner 2008] using an incremental approach to reuse the information computed
by the solver for smaller instances of the problem.

We have conducted the experiments using several benchmarks. Filesystem is used
for evaluation of the DPOR algorithm in [Flanagan and Godefroid 2005]. Parallel Pi
is a program that uses the divide and conquer technique; it divides a task to multiple
threads and then merges the results of each computation. The synthetic benchmark
performs arbitrarily generated sequences of operations. Dining implements the dining
philosophers problem. The Fib benchmark is from the 1st International Competition of
Software Verification (SV-COMP); it has been modified to bound the times some loops
are executed. For benchmarks that have multiple versions, the versions are similar
but involve more threads or increase in complexity.

The result of our experiments are summarized in Table II. As the number of execu-
tions performed by the algorithms SEDD can vary depending on the order in which the
execution paths are explored, the experiments were repeated 10 times and the average
results are reported.

The statements of the programs can be covered with less than two executions; since
the number of executions is small, the solver does not consume much computational
time to find a solution. The number of obtained executions is the same using the regu-
lar and contextual representation for the program, however the time results given in
the table are those obtained with the contextual unfolding.

For the Filesystem benchmarks, every event in both unfoldings can be covered with
just two executions showing that the results of SEDD are close to the optimal. For the
rest of the benchmarks, the number of executions grows and the encodings does not
scale; the table shows the biggest instance of k for which the solver found a solution
in less than 30 minutes and the corresponding time for obtaining the answer for that
instance. The table shows that the encoding can find solutions with not much compu-
tational time for most of the problems when less than 8 executions are needed. The
computational time for k > 8 usually grows too fast (see for example Parallel Pi 1); in
the case of the Fib benchmark, the encoding approach is slow even for small instances
of k since the encoding of the configurations is too big.

The above experiments suggest that even the proposed encoding computes an exact
solution to find the minimal test suite covering the unfolding representations of a pro-
gram, copying the encodings of configuration k times results in general in very large
formulas which cannot be easily solved by the solver.
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Table II: Experimental results with the SMT-encoding.

Benchmark
Statement Contextual Event PR Event
coverage unfolding coverage unfolding coverage

Tests Time Execs Time Execs Time Execs Time Execs Time
Filesystem 1 2 0m 0s 3 0m 0s 2 0m 0s 3 0m 0s 2 0m 0s
Filesystem 2 2 0m 0s 3 0m 0s 2 0m 0s 3 0m 0s 2 0m 0s
Parallel Pi 1 1 0m 0s 24 0m 0s >11 29m 31s 24 0m 0s >11 19m 17s
Parallel Pi 2 1 0m 0s 120 0m 0s >9 2m 37s 120 0m 0s >10 9m 21s
Parallel Pi 3 1 0m 4s 720 0m 2s >7 2m 14s 720 0m 2s >7 0m 53s

Synthetic 2 0m 2s 762 0m 1s >8 2m 23s 921 0m 2s >9 29m 12s
Dining 1 0m 1s 798 0m 3s >8 4m 38s 798 0m 3s >9 29m 43s
Fib 1 1 0m 25s 4950 0m 17s >8 15m 44s 19605 0m 3s >6 5m 35s
Fib 2 1 2m 1s 14546 0m 54s >5 28m 53s 59908 0m 10s >3 0m 39s

5. MINIMIZING TEST SUITES BASED ON HEURISTICS
The SMT-encoding presented in the last section gives an exact answer to the question
is it possible to cover all the events with k executions and thus the optimal number of
executions can be implemented by generating encodings for different k in an iterative
way. However, as it has been shown by the experiments, this approach does not scale
in practice. In this section we propose to use heuristics to find a preferably small set
of executions that covers the unfolding. We encode this as two different optimization
problems using Max-SMT and a maximal clique problem in graphs. These heuristic
compute an over-approximation of the solution, but work much better in practice.

5.1. The Max-SMT encoding
Given a Boolean formula (over some theory) φ in CNF (conjunctive normal form),
the Max-SMT problem consists in finding an assignment to its variables such that
it maximizes the number of clauses in φ. The formula is split into clauses which are
mandatory (or hard) and clauses which are relaxable (or soft). The goal is to find an
assignment that satisfies all the hard constraints while maximizes the number of soft
clauses; variations exist where the soft constraints are weighted and the goal is to
maximize the weight of the satisfied soft constraints.

We propose to find, in an iterative way, configurations that maximize the number of
events that have not yet been covered by any configuration. In Section 4.2 we showed
how to encode a configuration into SMT using constraints (C1)-(C3) and (R1)-(R3).
Those are the constraints that are mandatory (since they represent the fact that we
need to find a configuration) and are thus marked as hard. On each iteration the num-
ber of covered events that have not been covered before is maximized by adding a soft
constraint for each event that has not been covered by any previous configuration. In
other words we mark the still-uncovered subset of (EC) as soft.

The approach is summarized by Algorithm 2: it takes as an input an unfolding and
returns a number of sufficient configurations to cover all the events. The set U keeps
track of the events that still need to be covered. As an optimization it is initialized
to the set of maximal events max≤(E). On each iteration we create a new formula
where the configuration encoding is marked as hard and soft constraints are added for
each event still in U . Additionally, we add a hard constraint for one event eforce in U
that forces it to be in the cover. Adding such a constraint can not make the formula
unsatisfiable, since for any event e the configuration bec can cover it. This constraint
greatly speeded up some of our larger benchmarks. On the other hand it does make the
algorithm slightly less greedy, since the maximal cover on the current iteration might
not have included the forced event.
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ALGORITHM 2: Minimizing Test Suites with Max-SMT
Input: An unfolding net U := (B,E,G,C)

Output: a number k of executions which is enough to cover E
k := 0;
U := max≤(E);
while ∃eforce ∈ U do

φ := ϕeforce ;
for e ∈ E do

φ := φ ∧ HARD(ϕe ⇒
∧

e′∈•(•e)
ϕe′) ∧ HARD(ϕe ⇒ ge)

∧ HARD(ϕe ⇒
∧

e′∈•e
ϕe′) ∧ HARD(ϕe ⇒

∧
e′∈•(•e)∪•e

ne′ < ne)

∧ HARD(ϕe ⇒
∧

•e′∩e 6=∅
ne < ne′);

for c ∈ •e do
φ := φ ∧HARD(ϕe ⇒

∧
e′∈c•\{e}

¬ϕe′);

for e ∈ U do
φ := φ ∧ SOFT (ϕe);

assert SOLV E(φ) == SAT ;
for ϕe ∈MODEL(φ) do

U := U \ {e} ;
k := k + 1 ;

return k

We use the notation HARD(φ) and SOFT (φ) to instruct the Max-SAT solver that
the constraint φ is hard and soft respectively. One can use an off-the-shelf Max-SMT
solver to check if the formula is satisfiable (SOLV E(φ) == SAT ). Finally, each event
such that its corresponding variable is true in the model (ϕe ∈MODEL(φ)) is removed
from U , the number of used configurations is increased and if U is still non-empty a
new iteration is started.

5.2. The Max-Clique Encoding
In graph theory, the maximal clique problem consists in finding a maximal subset of
nodes that are pair-wise adjacent. This problem arises in several real-word settings
such as social networks or bioinformatics. Even if the decision problem is NP-complete
and even hard to approximate, there exists several algorithms that work very well in
practice. We show now how to minimize the number of executions to cover the unfold-
ing representation of a program; as in the case of Section 5.1, we try to maximize the
number of events covered by a single configuration and use an iterative approach until
all the events are covered.

Given an unfolding U := (B,E,G,C), we construct a graph G := (V,A) where
V := max≤(E), and (e1, e2) ∈ A iff e1 co e2, i.e. the graph contains one node for each
maximal event and there is an arc between two nodes if their corresponding events are
concurrent. Since we only consider maximal events, they can be either concurrent or in
conflict (if they would be causally dependent, one of them would not be maximal). By
finding a maximal clique in G, we obtain a maximal set of pairwise concurrent maxi-
mal events. We can remove the events in the clique from V and repeat the procedure
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ALGORITHM 3: Minimizing Test Suites with Max-Cliques
Input: An unfolding net U := (B,E,G,C)

Output: a number k of executions which is enough to cover E
k := 0;
V := max≤(E) ;
while V 6= ∅ do

A := {(e1, e2) ∈ V × V | e1 co e2} ;
Find a maximal clique C in (V,A) ;
V := V \ C ;
k := k + 1 ;

return k

Table III: Experimental results for greedy event coverage.

Benchmark Traces
Contextual unfolding PR unfolding

SEDD Max-SMT SEDD Max-SMT Max-Clique
Execs Execs Time Execs Execs Time Execs Time

Filesystem 1 8 3 2 0m 0s 3 2 0m 0s 2 0m 0s
Filesystem 2 32 3 2 0m 0s 3 2 0m 0s 2 0m 0s
Parallel Pi 1 24 24 24 0m 0s 24 24 0m 0s 24 0m 0s
Parallel Pi 2 120 120 120 0m 7s 120 120 0m 7s 120 0m 1s
Parallel Pi 3 720 720 720 7m 26s 720 720 9m 30s 720 1m 5s

Synthetic 1316 762 590 1m 59s 921 654 1m 58s 654 0m 1s
Dining 831 798 786 4m 46s 798 786 2m 48s 786 0m 12s
Fib 1 19605 4950 3521 49m 38s 19605 - >60m 19605 17m 23s
Fib 2 59908 14546 - >60m 59908 - >60m - >60m

to find another configuration covering the remaining events. Algorithm 3 summarizes
the procedure. We use this approach only for the place replication unfolding, since in
the contextual unfolding a clique in the pair-wise co-relation might have a↗-cycle and
thus it might not correspond to a configuration.

5.3. Experiments.
We evaluate the test suite minimization algorithms from above on the set of bench-
marks used in Section 4.4 and benchmarks coming from [Rodrı́guez et al. 2015]. We
have implemented the Max-SMT encoding (Algorithm 2) using the Z3 solver [de Moura
and Bjørner 2008] and the Max-Clique encoding (Algorithm 3) using the Cliquer
tool [Niskanen and Östergård 2002; Östergård 2002]. For the Max-Clique encoding we
additionally detect when the maximum clique size is at most two and switch over to a
simpler routine that on each iteration simply selects any pair of adjacent nodes (if any)
or an arbitrary node. Table III compares the test suites generated using the heuristic
approaches with those from SEDD. The entries with “-” indicate that the running time
exceeded one hour, at which point we terminated the execution.

When using contextual unfoldings, for the Filesystem, Synthetic, Dining and Fib1
benchmarks the Max-SAT approach was able to improve upon the test suites from
SEDD, which gives a new upper bound on the size of the minimal test suite. For ex-
ample, now we can bound the size of the minimal test suite for Synthetic (with a con-
textual unfolding) to 8 < opt ≤ 590. The results for Filesystem are optimal as verified
by the results in Table II. For the Parallel Pi benchmark, no conclusion can be made
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since Max-SAT does not compute the minimal number of executions but instead an
over-approximation. However this shows that in practice SEDD work as good as opti-
mization techniques that know a priori the structure of the whole unfolding.

For the place replication unfolding we can compare the solutions of the Max-Clique
and the Max-SMT encodings. The Max-Clique encoding has lower or equal running
time on all benchmarks and was able to solve the Fib 1 benchmark, on which the
Max-SMT encoding exceeded our time limits. A distinguishing feature of the Fib 1
benchmark is that the maximum clique size is two, which results in only one call to
the Cliquer tool being made (to find one maximum clique), while the other cliques are
found using the simpler procedure for finding cliques of size at most two. In our exper-
iments this greatly contributed to the low running time of the Max-Clique approach on
the Fib 1 benchmark. In the Max-Clique approach, the construction of the co-relation
dominates the running time: for example for Fib 1 constructing the co-relation took
14m 24s. Notice that for all the cases were Max-SMT and Max-Clique found a solu-
tion, both solutions coincide. No final conclusion can be made from this but since the
three techniques (SEDD and both optimization methods) coincides, this may suggest
that the approximate solutions are in fact optimal.

To evaluate the Max-SMT encoding on event structures, we modified Algorithm 2 so
that instead of encoding the configurations of an occurence net, we encode those of an
event structure. For an event structure E := (E,≤,#, λ) the following constraints are
used: ∧

e≤e′
ϕe′ ⇒ ϕe (ES1)

∧
e#e′

¬(ϕe ∧ ϕe′) (ES2)

For all e, variable ϕe corresponds to the event e being fired. (ES1) encodes causality,
while (ES2) encodes conflicts. Apart from this change the algorithm remains the same.

Table IV compares the test suites generated by the POET tool [Rodrı́guez et al. 2015]
(one execution per Mazurkiewicz trace) and the Max-SMT encoding on event struc-
tures. For the CCNF family of programs the Max-SMT encoding is able to reduce the
test suite to two (which is actually the optimal) regardless of the number of threads
involved. This is due to the fact that the CCNF programs are composed of sets of non-
communicating threads, each of which can be covered with two executions. In contrast,
POET sees an exponential blowup as the number of threads grows due to the fact that it
is exploring Mazurkiewicz traces. This highlights how for some programs minimizing
test suites such that only local properties are maintained can result in an exponential
reduction in the size of the test suite. The authors are currently working in a method
that performs LFS on the unfolding semantics of the program (i.e. an event structure);
initial results show an exponential reduction for this family of examples, although
optimality is not yet reached.

For the other programs, the Max-SMT encoding does not result in reduction since
the programs are such that the main thread joins with all other threads at the end
of the program. This communication results in the event structure having a separate
maximal event for each Mazurkiewicz trace. The ProdCons(2) program is an exception,
with Max-SMT achieving a reduction of one execution due to the fact that this event
structure is generated using cut-off events and thus some event representing the joins
mentioned above is not modeled.
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Table IV: Experimental results for covering event structures.

Benchmark POET
Max-SMT

Execs Time
CCNF(9) 16 2 0s

CCNF(17) 256 2 0s
CCNF(19) 512 2 0s
Peterson 20 20 0s
PGSQL 4 4 0s

ProdCons 386 386 8s
ProdCons(2) 15 14 0s

Spin08 84 84 1s
SSB 4 4 0s

SSB(1) 23 23 0s
SSB(3) 90 90 1s
SSB(4) 142 142 2s

STF 6 6 0s
Szymanski 159 159 2s

6. CONCLUSIONS AND FUTURE WORK
In this paper we show how to use different unfolding representations to generate test
suites for multithreaded programs. We show that the problem of covering all the events
in the unfolding is NP-complete, and present an associated SMT-encoding for finding
a minimal test suite. Additionally we presented a modified encoding to cover all the
statements in the unfolded program. This decouples the minimality of a test suite from
the way the program is modeled. We run several experiments on a set of benchmarks
which show that the encodings for covering all events does not scale to program with
larger unfoldings, but the encoding for statement coverage do.

In light of the apparent infeasibility of finding minimal event covers, we present two
heuristic approaches to minimizing test suites: an approach using a Max-SMT encod-
ing that can handle all types of unfoldings, and an approach using Max-Clique that is
faster, but is only suitable for the place replication unfolding. We describe optimiza-
tions for both approaches. We evaluate the approaches on our set of benchmarks and
achieve minimization for several programs. In particular, for the Synthetic program
the heuristic approaches achieved a significant reduction, while the encoding for min-
imality timed out with a very low lower bound. We further evaluate the approaches on
a set of event structures from the POET tool [Rodrı́guez et al. 2015] and show that pre-
serving only local properties (such as assertion errors) can allow exponentially smaller
test suites.

Future work includes a technique that applies local first search to programs modeled
with event structures; this technique does not preserve Mazurkiewicz traces, but it
can have up to exponential reductions in the number of executions for local properties.
Another interesting topic is adding cut-off events in the modeling of non-terminating
program which can handle inputs from the environment.
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Sampo Niskanen and Patric Östergård. 2002. Cliquer - routines for clique searching. (2002). http://users.
aalto.fi/∼pat/cliquer.html
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Laboratoire Spécification et Vérification, ENS Cachan, France.

César Rodrı́guez, Marcelo Sousa, Subodh Sharma, and Daniel Kroening. 2015. Unfolding-based Partial Or-
der Reduction. In 26th International Conference on Concurrency Theory, CONCUR 2015, Madrid, Spain,
September 1.4, 2015. 456–469.

Koushik Sen. 2006. Scalable automated methods for dynamic program analysis. Doctoral Thesis. University
of Illinois.

Antti Valmari. 1996. The State Explosion Problem. In Lectures on Petri Nets I: Basic Models, Advances in
Petri Nets, the volumes are based on the Advanced Course on Petri Nets, held in Dagstuhl, September
1996. 429–528.

Received February 2007; revised March 2009; accepted June 2009

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.


